A composite device for viscosupplementation treatment resistant to degradation by reactive oxygen species and hyaluronidase
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35727166
DOI
10.1002/jbm.b.35114
Knihovny.cz E-resources
- Keywords
- ROS, hyaluronidase, tyramine derivative of hyaluronic acid, viscoelastic properties, viscosupplementation,
- MeSH
- Osteoarthritis, Knee * MeSH
- Chondroitin Sulfates pharmacology MeSH
- Hyaluronoglucosaminidase therapeutic use MeSH
- Injections, Intra-Articular MeSH
- Hyaluronic Acid pharmacology MeSH
- Humans MeSH
- Osteoarthritis * drug therapy MeSH
- Reactive Oxygen Species MeSH
- Tyramine therapeutic use MeSH
- Viscosupplementation * methods MeSH
- Viscosupplements therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chondroitin Sulfates MeSH
- Hyaluronoglucosaminidase MeSH
- Hyaluronic Acid MeSH
- Reactive Oxygen Species MeSH
- Tyramine MeSH
- Viscosupplements MeSH
Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the world. OA is often associated with the loss of viscoelastic and tribological properties of synovial fluid (SF) due to degradation of hyaluronic acid (HA) by reactive oxygen species (ROS) and hyaluronidases. Viscosupplementation is one of the ways how to effectively restore SF functions. However, current viscosupplementation products provide only temporal therapeutic effect because of short biological half-life. In this article we describe a novel device for viscosupplementation (NV) based on the cross-linked tyramine derivative of HA, chondroitin sulfate (CS), and high molecular weight HA by online determination of viscoelastic properties loss during degradation by ROS and hyaluronidase. Rheological and tribological properties of developed viscosupplement were compared with HA solutions with different molecular weights in the range 500-2000 kDa, which are currently commonly used as medical devices for viscosupplementation treatment. Moreover, based on clinical practice and scientific literature all samples were also diluted by model OA SF in the ratio 1:1 (vol/vol) to better predict final properties after injection to the joint. The observed results confirmed that NV exhibits appropriate rheological properties (viscosity, elastic, and viscous moduli) comparable with healthy SF and maintain them during degradation for a significantly longer time than HA solutions with molecular weight in the range 500-2000 kDa and cross-linked material without CS.
Biocev 1st Faculty of Medicine Charles University Vestec Czech Republic
Contipro a s Dolní Dobrouč Czech Republic
Faculty of Mechanical Engineering Brno University of Technology Brno Czech Republic
See more in PubMed
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789-1858.
Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204-1222.
Poulet B, Staines KA. New developments in osteoarthritis and cartilage biology. Curr Opin Pharmacol. 2016;28:8-13.
Haq I, Murphy E, Dacre J. Osteoarthritis. Postgrad Med J. 2003;79(933):377-383.
Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther. 2003;5(2):54-67.
Barbe MF, Driban J, Barr AE, Popoff SN, Safadi FF. Structure and function of joints. In: Khurana JS, ed. Bone Pathology. Humana Press; 2009:51-60.
Saladin KS. Human Anatomy. Michelle Watnick; 2008.
Dudhia J. Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci. 2005;62(19):2241-2256.
Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77-95.
Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 2001;391 Suppl:S26-S33.
Balazs E. The physical properties of synovial fluid and the specific role of hyaluronic acid. Disorders of the Knee. T.B. Lippincott Company; 1974:63-75.
Balazs EA. Chapter 20- viscoelastic properties of hyaluronan and its therapeutic use*. Chemistry and Biology of Hyaluronan. Elsevier Science Ltd; 2004:415-455.
Amin AR, Dave M, Attur M, Abramson SB. COX-2, NO, and cartilage damage and repair. Curr Rheumatol Rep. 2000;2(6):447-453.
Sandell LJ, Aigner T. Articular cartilage and changes in arthritis: cell biology of osteoarthritis. Arthritis Res Ther. 2001;3(2):107.
Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001;44(6):1237-1247.
Attur MG, Dave M, Akamatsu M, Katoh M, Amin AR. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthr Cartil. 2002;10(1):1-4.
Cawston TE, Wilson AJ. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol. 2006;20(5):983-1002.
Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, Fosang AJ. Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008;65(3):395-413.
Yoshida M, Sai S, Marumo K, et al. Expression analysis of three isoforms of hyaluronan synthase and hyaluronidase in the synovium of knees in osteoarthritis and rheumatoid arthritis by quantitative real-time reverse transcriptase polymerase chain reaction. Arthritis Res Ther. 2004;6(6):R514-R520.
Nagaya H, Ymagata T, Ymagata S, et al. Examination of synovial fluid and serum hyaluronidase activity as a joint marker in rheumatoid arthritis and osteoarthritis patients (by zymography). Ann Rheum Dis. 1999;58(3):186-188.
Moseley R, Waddington R, Evans P, Halliwell B, Embery G. The chemical modification of glycosaminoglycan structure by oxygen-derived species in vitro. Biochim Biophys Acta. 1995;1244(2):245-252.
Šoltés L, Mendichi R, Kogan G, Schiller J, Stankovská M, Arnhold J. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules. 2006;7(3):659-668.
Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem. 2000;275(26):20069-20076.
Heijink A, Gomoll AH, Madry H, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):423-435.
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576-591.
Henrotin YE, Bruckner P, Pujol JPL. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil. 2003;11(10):747-755.
Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthr Cartil. 2005;13(8):643-654.
Zahan O-M, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020;93(1):12-22.
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med. 2019;132:73-82.
Levick JR. Permeability of rheumatoid and normal human synovium to specific plasma proteins. Arthritis Rheum. 1981;24(12):1550-1560.
Lee HG, Cowman MK. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem. 1994;219(2):278-287.
Hamerman D, Schuster H. Hyaluronate in normal human synovial fluid. J Clin Investig. 1958;37(1):57-64.
Decker B, McGuckin WF, McKenzie BF, Slocumb CH. Concentration of hyaluronic acid in synovial fluid. Clin Chem. 1959;5(5):465-469.
Mathieu P, Conrozier T, Vignon E, Rozand Y, Rinaudo M. Rheologic behavior of osteoarthritic synovial fluid after addition of hyaluronic acid: a pilot study. Clin Orthop Relat Res. 2009;467(11):3002-3009.
Yamada H, Morita M, Henmi O, et al. Hyaluronan in synovial fluid of patients with loose total hip prosthesis. Comparison with hyaluronan in patients with hip osteoarthritis and idiopathic osteonecrosis of femoral head. Arch Orthop Trauma Surg. 2000;120(9):521-524.
Mazzucco D, Scott R, Spector M. Composition of joint fluid in patients undergoing total knee replacement and revision arthroplasty: correlation with flow properties. Biomaterials. 2004;25(18):4433-4445.
Balazs EA, Watson D, Duff IF, Roseman S. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum. 1967;10(4):357-376.
Brown TJ, Laurent UB, Fraser JR. Turnover of hyaluronan in synovial joints: elimination of labelled hyaluronan from the knee joint of the rabbit. Exp Physiol. 1991;76(1):125-134.
Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27-33.
Antonas KN, Fraser JR, Muirden KD. Distribution of biologically labelled radioactive hyaluronic acid injected into joints. Ann Rheum Dis. 1973;32(2):103-111.
Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 2007;80(21):1921-1943.
Larsen NE, Dursema HD, Pollak CT, Skrabut EM. Clearance kinetics of a hylan-based viscosupplement after intra-articular and intravenous administration in animal models. J Biomed Mater Res B Appl Biomater. 2012;100(2):457-462.
Bhuanantanondh P, Grecov D, Kwok E. Rheological study of Viscosupplements and synovial fluid in patients with osteoarthritis. J Med Biol Eng. 2010;32(1):12-16.
Edsman K, Hjelm R, Lärkner H, et al. Intra-articular duration of durolane™ after single injection into the rabbit knee. Cartilage. 2011;2(4):384-388.
Lapasin R. Rheological studies dedicated to the development of a novel injectable polymeric blend for Viscosupplementation treatment. Chem Biochem Eng Q. 2016;29:511-518.
Wolfova, L.; Pravda, M.; Foglarova, M.; Nemcova, M.; Niedoba, K.; Velebny, V. Derivates based on hyaluronic acid, capable of forming hydrogels, method of preparation thereof, hydrogels based on said derivatives, method of preparation thereof and use. 2015.
Toropitsyn, E.; Pravda, M.; Kovarova, L.; Bystronova, J.; Velebny, V. Hydrogel based on crosslinked hydroxyphenyl derivative of hyaluronic acid 2021.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248-254.
Šoltés L, Brezová V, Stankovská M, Kogan G, Gemeiner P. Degradation of high-molecular-weight hyaluronan by hydrogen peroxide in the presence of cupric ions. Carbohydr Res. 2006;341(5):639-644.
Šedová P, Buffa R, Kettou S, et al. Preparation of hyaluronan polyaldehyde-a precursor of biopolymer conjugates. Carbohydr Res. 2013;371:8-15.
Schurz J. Rheology of synovial fluids and substitute polymers. J Macromol Sci A. 1996;33(9):1249-1262.
Safari M, Bjelle A, Gudmundsson M, Högfors C, Granhed H. Clinical assessment of rheumatic diseases using viscoelastic parameters for synovial fluid. Biorheology. 1990;27(5):659-674.
Rainer F, Ribitsch V. Viscoelastic properties of normal human synovia and their relation to biomechanics. Z Rheumatol. 1985;44(3):114-119.
Fam H, Bryant JT, Kontopoulou M. Rheological properties of synovial fluids. Biorheology. 2007;44(2):59-74.
Hrabárová E, Valachová K, Juránek I, Soltés L. Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: evaluation of antioxidative effect of cysteine-derived compounds. Chem Biodivers. 2012;9(2):309-317.
Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85(3):469-489.
Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Hyaluronic acid hydrogels crosslinked in physiological conditions: synthesis and biomedical applications. Biomedicine. 2021;9(9):1113.
Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017;8:2041731417726464.
Caccavo D, Cascone S, Lamberti G, Barba AA. Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chem Soc Rev. 2018;47(7):2357-2373.
Jooybar E, Abdekhodaie MJ, Alvi M, Mousavi A, Karperien M, Dijkstra PJ. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Acta Biomater. 2019;83:233-244.
O'Dwyer J, Cullen M, Fattah S, et al. Development of a sustained release nano-in-gel delivery system for the chemotactic and Angiogenic growth factor stromal-derived factor 1α. Pharmaceutics. 2020;12(6):513.
Han F, Ishiguro N, Ito T, Sakai T, Iwata H. Effects of sodium hyaluronate on experimental osteoarthritis in rabbit knee joints. Nagoya J Med Sci. 1999;62(3-4):115-126.
Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T. Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum. 2004;50(2):516-525.
Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord. 2015;16:321.
Iannitti T, Lodi D, Palmieri B. Intra-articular injections for the treatment of osteoarthritis: focus on the clinical use of hyaluronic acid. Drugs R&D. 2011;11(1):13-27.
Watterson JR, Esdaile JM. Viscosupplementation: therapeutic mechanisms and clinical potential in osteoarthritis of the knee. J Am Acad Orthop Surg. 2000;8(5):277-284.
Legre-Boyer V. Viscosupplementation: techniques, indications, results. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S101-S108.
Bannuru RR, Osani MC, Vaysbrot EE, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr Cartil. 2019;27(11):1578-1589.
Henrotin Y, Marty M, Mobasheri A. What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis? Maturitas. 2014;78(3):184-187.
Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym. 2012;89(3):723-739.
Bishnoi M, Jain A, Hurkat P, Jain SK. Chondroitin sulphate: a focus on osteoarthritis. Glycoconj J. 2016;33(5):693-705.
David-Raoudi M, Deschrevel B, Leclercq S, Galéra P, Boumediene K, Pujol JP. Chondroitin sulfate increases hyaluronan production by human synoviocytes through differential regulation of hyaluronan synthases: role of p38 and Akt. Arthritis Rheum. 2009;60(3):760-770.
Bayliss MT, Osborne D, Woodhouse S, Davidson C. Sulfation of chondroitin sulfate in human articular cartilage: the effect of age, topographical position, and zone of cartilage on tissue composition *. J Biol Chem. 1999;274(22):15892-15900.
Lin T-S, Hsieh C-H, Kuo C, et al. Sulfation pattern of chondroitin sulfate in human osteoarthritis cartilages reveals a lower level of chondroitin-4-sulfate. Carbohydr Polym. 2020;229:115496.
Kakizaki I, Koizumi H, Chen F, Endo M. Inhibitory effect of chondroitin sulfate oligosaccharides on bovine testicular hyaluronidase. Carbohydr Polym. 2015;121:362-371.
Campo GM, D'Ascola A, Avenoso A, et al. Glycosaminoglycans reduce oxidative damage induced by copper (Cu+2), iron (Fe+2) and hydrogen peroxide (H2O2) in human fibroblast cultures. Glycoconj J. 2004;20(2):133-141.
Xiong S-L, Jin Z-Y. The FREE radical-scavenging property of chondroitin sulfate from pig laryngeal cartilage in vitro. J Food Biochem. 2007;31(1):28-44.
Campo GM, Avenoso A, Campo S, Ferlazzo AM, Calatroni A. Chondroitin sulphate: antioxidant properties and beneficial effects. Mini Rev Med Chem. 2006;6(12):1311-1320.
More S, Kotiya A, Kotia A, Ghosh SK, Spyrou LA, Sarris IE. Rheological properties of synovial fluid due to viscosupplements: a review for osteoarthritis remedy. Comput Methods Prog Biomed. 2020;196:105644.
Messina C, Guglielmi G, Orlandi D, Corazza A, Mauri G, Sconfienza LM. The role of joint Viscosupplementation in geriatric population. Curr Radiol Rep. 2017;5:1.
Dougados M, Nguyen M, Listrat V, Amor B. High molecular weight sodium hyaluronate (hyalectin) in osteoarthritis of the knee: a 1 year placebo-controlled trial. Osteoarthr Cartil. 1993;1(2):97-103.
Stafford CT, Niedermeier W, Holley HL, Pigman W. Studies on the concentration and intrinsic viscosity of hyaluronic acid in synovial fluids of patients with rheumatic diseases. Ann Rheum Dis. 1964;23(2):152-157.
Bhuanantanondh P, Grecov D, Kwok E, Guy P. Rheology of osteoarthritic synovial fluid mixed with viscosupplements: a pilot study. Biomed Eng Lett. 2011;1(4):213-219.
Rebenda D, Vrbka M, Čípek P, et al. On the dependence of rheology of hyaluronic Acid solutions and frictional behavior of articular cartilage. Materials. 2020;13(11):2659.
Kwiecinski JJ, Dorosz SG, Ludwig TE, Abubacker S, Cowman MK, Schmidt TA. The effect of molecular weight on hyaluronan's cartilage boundary lubricating ability - alone and in combination with proteoglycan 4. Osteoarthr Cartil. 2011;19(11):1356-1362.
Brannan SR, Jerrard DA. Synovial fluid analysis. J Emerg Med. 2006;30(3):331-339.
Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012;4(1):15-37.
Bortel EL, Charbonnier B, Heuberger R. Development of a synthetic synovial fluid for tribological testing. Lubricants. 2015;3(4):664-686.
Safari A, Espanol M, Ginebra M-P, Cervantes MJ, Emami N. Effect of dynamic loading versus static loading on the frictional behavior of a UHMWPE pin in artificial biolubricants. Biosurface Biotribology. 2017;3(1):35-44.
Ghosh S, Choudhury D, Roy T, Moradi A, Masjuki HH, Pingguan-Murphy B. Tribological performance of the biological components of synovial fluid in artificial joint implants. Sci Technol Adv Mater. 2015;16(4):045002.
Yarimitsu S, Sasaki S, Murakami T, Suzuki A. Evaluation of lubrication properties of hydrogel artificial cartilage materials for joint prosthesis. Biosurface Biotribology. 2016;2(1):40-47.
Kogan G, Šoltés L, Stern R, Schiller J, Mendichi R. Hyaluronic acid: its function and degradation in in vivo systems. Stud Nat Prod Chem. 2008;34:789-882.
Carlin G, Djursater R. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin. FEBS Lett. 1984;177(1):27-30.
Valachová K, Topoľská D, Mendichi R, Collins MN, Sasinková V, Šoltés L. Hydrogen peroxide generation by the Weissberger biogenic oxidative system during hyaluronan degradation. Carbohydr Polym. 2016;148:189-193.
Šoltés L, Kogan G, Stankovská M, Mendichi R, Schiller J, Gemeiner P. Degradation of high-molar-mass Hyaluronan and characterization of fragments. Biomacromolecules. 2007;8(9):2697-2705.
Aboul-Enein HY, Kruk I, Kładna A, Lichszteld K, Michalska T. Scavenging effects of phenolic compounds on reactive oxygen species. Biopolymers. 2007;86(3):222-230.
Yen G-C, Hsieh C-L. Antioxidant effects of dopamine and related compounds. Biosci Biotechnol Biochem. 1997;61(10):1646-1649.
Conrozier T, Mathieu P, Rinaudo M. Mannitol preserves the viscoelastic properties of hyaluronic Acid in an in vitro model of oxidative stress. Rheumatol Ther. 2014;1(1):45-54.