Porcine spleen as a model organ for blunt injury impact tests: An experimental and histological study
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_048/0007280
European Regional Development Fund
ProgresQ39
Univerzita Karlova v Praze
CooperatioMED/DIAG
Univerzita Karlova v Praze
SVV260536
Univerzita Karlova v Praze
GAUK1098120
Univerzita Karlova v Praze
UNCE/MED/006
Univerzita Karlova v Praze
SGS-2022-008
Západočeská Univerzita v Plzni
PubMed
35751561
DOI
10.1111/ahe.12831
Knihovny.cz E-zdroje
- Klíčová slova
- impact loading, mechanical behaviour, porcine spleen, quantitative microscopy,
- MeSH
- lidé MeSH
- nemoci prasat * MeSH
- prasata MeSH
- slezina MeSH
- tupá poranění * veterinární MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The spleen is a large and highly vascularized secondary lymphatic organ. Spleen injuries are among the most frequent trauma-related injuries in the abdominal region. The aims of the study were to assess the volume fractions of the main splenic tissue components (red pulp, white pulp, trabeculae and reticular fibres) and to determine the severity of splenic injury due to the experimental impact test. Porcine spleens (n = 17) were compressed by 6.22 kg wooden plate using a drop tower technique from three impact heights (50, 100 and 150 mm corresponding to velocities 0.79, 1.24 and 1.58 m/s). The pressure was measured via catheters placed in the splenic vein. The impact velocity was measured using lasers. The severity of induced injuries was analysed on the macroscopic level. The volume fractions of splenic components were assessed microscopically using stereology. The volume fraction of the red pulp was 76.4%, white pulp 21.3% and trabeculae 2.7% respectively. All impact tests, even with the low impact velocities, led to injuries that occurred mostly in the dorsal extremity of the spleen, and were accompanied by bleeding, capsule rupture and parenchyma crushing. Higher impact height (impact velocity and impact energy) caused more severe injury. Porcine spleen had the same volume fraction of tissue components as human spleen, therefore we concluded that the porcine spleen was a suitable organ model for mechanical experiments. Based on our observations, regions around hilum and the diaphragmatic surface of the dorsal extremity, that contained fissures and notches, were the most prone to injury and required considerable attention during splenic examination after injury. The primary mechanical data are now available for the researchers focused on the splenic trauma modelling.
Department of Mechanics Faculty of Applied Sciences University of West Bohemia Pilsen Czech Republic
New Technologies Research Centre University of West Bohemia Pilsen Czech Republic
Zobrazit více v PubMed
Alim, A., Nurunnabi, A., Ara, S., Mahbub, S., & Mohanta, L. (2012). Comparative histological study on the spleen of human (Homo sapiens), cow (Bos indicus) and goat (Capra hircus). Nepal Journal of Medical Sciences, 1, 64-67. https://doi.org/10.3126/njms.v1i2.6601
Arumugam, S., & Subbiah, N. K. (2020). A cadaveric study of splenic fissures and bilobed spleen. Sultan Qaboos University Medical Journal, 20(4), 346-351. https://doi.org/10.18295/squmj.2020.20.04.011
Ashkezari, H. D., Mirbagheri, A., Behzadipour, S., & Farahmand, F. (2015). A mass-spring-damper model for real time simulation of the frictional grasping interactions between surgical tolls and large organs. Scientia Iranica B, 22, 1833-1841.
Beillas, P., & Berthet, F. (2017). An investigation of human body model morphing for the assessment of abdomen responses to impact against a population of test subjects. Traffic Injury Prevention, 18(sup1), S142-S147. https://doi.org/10.1080/15389588.2017.1307971
Cabral, M., Ortiz, A., Venâncio, C., Mesquita, J., Nóbrega, C., Silva, A., Vala, H., & Ferreira, D., (2014). Histological evaluation of the spleen after acute bleeding followed by volume replacement with two different physiological solutions. Journal of Comparative Pathology, 150, 120. https://doi.org/10.1016/j.jcpa.2013.11.182
Cesta, M. F. (2006). Normal structure, function, and histology of the spleen. Toxicologic Pathology, 34(5), 455-465. https://doi.org/10.1080/01926230600867743
Chaudhari, D. M. L., Maheria, D. P., Lakhani, D. C., & Menezes, D. V. (2014). Morphological variations of human spleen and its clinical significance. International Journal of Medical Research & Review, 2, 16-20. https://doi.org/10.17511/ijmrr.2014.i01.04
Chebil, O., Behr, M., Auriault, F., & Arnoux, P. J. (2014). Biomechanical analysis of the splenic avulsion mechanism. Medical & Biological Engineering & Computing, 52(8), 629-637. https://doi.org/10.1007/s11517-014-1166-6
Chen, Y., Qiu, J., Yang, A., Yuan, D., & Zhou, J. (2017). Epidemiology and management of splenic injury: An analysis of a Chinese military registry. Experimental and Therapeutic Medicine, 13(5), 2102-2108. https://doi.org/10.3892/etm.2017.4208
Coccolini, F., Fugazzola, P., Morganti, L., Ceresoli, M., Magnone, S., Montori, G., Tomasoni, M., Maccatrozzo, S., Allievi, N., Occhionorelli, S., Kluger, Y., Sartelli, M., Baiocchi, G. L., Ansaloni, L., & Catena, F. (2019). The World Society of Emergency Surgery (WSES) spleen trauma classification: A useful tool in the management of splenic trauma. World Journal of Emergency Surgery, 14, 30. https://doi.org/10.1186/s13017-019-0246-1
Coccolini, F., Montori, G., Catena, F., Kluger, Y., Biffl, W., Moore, E. E., Reva, V., Bing, C., Bala, M., Fugazzola, P., Bahouth, H., Marzi, I., Velmahos, G., Ivatury, R., Soreide, K., Horer, T., Ten Broek, R., Pereira, B. M., Fraga, G. P., … Ansaloni, L. (2017). Splenic trauma: WSES classification and guidelines for adult and pediatric patients. World Journal of Emergency Surgery, 12, 40. https://doi.org/10.1186/s13017-017-0151-4
Costa, G., Tierno, S. M., Tomassini, F., Venturini, L., Frezza, B., Cancrini, G., & Stella, F. (2010). The epidemiology and clinical evaluation of abdominal trauma. An analysis of a multidisciplinary trauma registry. Annali Italiani di Chirurgia, 81(2), 95-102.
de Oliveira, G. B., Câmara, F. V., Bezerra, F. V. F., de Araújo Júnior, H. N., de Oliveira, R. E. M., Costa, H. S., Santos, A. C., de Moura, C. E. B., & de Oliveira, M. F. (2018). Morphology and anatomic-surgical segmentation of the spleen of Pecari tajacu Linnaeus, 1758. Bioscience Journal, 34, 1339-1348. https://doi.org/10.14393/BJ-v34n5a2018-36415
Duơng, T. M., Nguyễn, H. N., Trần, N. T., Tolba, R. H., & Staat, M. (2015). Influence of refrigerated storage on tensile mechanical properties of porcine liver and spleen. International Biomechanic, 2(1), 79-88. https://doi.org/10.1080/23335432.2015.1049295
Dyce, K. M., Sack, W. O., & Wensing, C. J. G. (2009). Textbook of veterinary anatomy (4th ed.). Elsevier.
Eberlova, L., Liska, V., Mirka, H., Tonar, Z., Haviar, S., Svoboda, M., Benes, J., Palek, R., Emingr, M., Rosendorf, J., Mik, P., Leupen, S., & Lametschwandtner, A. (2017). The use of porcine corrosion casts for teaching human anatomy. Annals of Anatomy = Anatomischer Anzeiger, 213, 69-77. https://doi.org/10.1016/j.aanat.2017.05.005
Fomin, D., Chmieliauskas, S., Petrauskas, V., Sumkovskaja, A., Ginciene, K., Laima, S., Jurolaic, E., & Stasiuniene, J. (2019). Traumatic spleen rupture diagnosed during postmortem dissection: A STROBE-compliant retrospective study. Medicine, 98(40), e17363. https://doi.org/10.1097/MD.0000000000017363
Hampton C. E., & Kleinberger M. (2018). Material models for the human torso finite element model Online. https://apps.dtic.mil/dtic/tr/fulltext/u2/1049446.pdf
Kemper, A. R., Santago, A. C., Stitzel, J. D., Sparks, J. L., & Duma, S. M. (2012). Biomechanical response of human spleen in tensile loading. Journal of Biomechanics, 45(2), 348-355. https://doi.org/10.1016/j.jbiomech.2011.10.022
Khan, S. A., Yasmeen, S., Adel, H., Adil, S. O., Huda, F., & Khan, S. (2018). Sonographic evaluation of normal liver, spleen, and renal parameters in adult population: A multicenter study. Journal of the College of Physicians and Surgeons-Pakistan, 28(11), 834-839. https://doi.org/10.29271/jcpsp.2018.11.834
Kolinko, Y., Malečková, A., Kochová, P., Grajciarová, M., Blassová, T., Kural, T., Trailin, A., Červenková, L., Havránková, J., Vištejnová, L., Tonarová, P., Moulisová, V., Jiřík, M., Zavaďáková, A., Tichánek, F., Liška, V., Králíčková, M., Witter, K., & Tonar, Z. (2022). Using virtual microscopy for the development of sampling strategies in quantitative histology and design-based stereology. Anatomia, Histologia, Embryologia, 51(1), 3-22. https://doi.org/10.1111/ahe.12765
König, H. E., & Liebich, H. G. (2020). Veterinary anatomy of domestic animals: Textbook and colour atlas. Georg Thieme Verlag.
Kozar, R. A., Crandall, M., Shanmuganathan, K., Zarzaur, B. L., Coburn, M., Cribari, C., Kaups, K., Schuster, K., Tominaga, G. T., & AAST Patient Assessment Committee. (2018). Organ injury scaling 2018 update: Spleen, liver, and kidney. The Journal of Trauma and Acute Care Surgery, 85(6), 1119-1122. https://doi.org/10.1097/TA.0000000000002058
Lu, Y. C., & Untaroiu, C. D. (2013). Effect of storage methods on indentation-based material properties of abdominal organs. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 227(3), 293-301. https://doi.org/10.1177/0954411912468558
Malečková, A., Kochová, P., Pálek, R., Liška, V., Mik, P., Bońkowski, T., Horák, M., & Tonar, Z. (2021). Blunt injury of liver: Mechanical response of porcine liver in experimental impact test. Physiological Measurement, 42(2), 025008. https://doi.org/10.1088/1361-6579/abdf3c
Marchesseau, S., Chatelin, S., & Delingette, H. (2017). Non linear biomechanical model of the liver: Hyperelastic constitutive laws for finite element modelling. In Y. Payan & J. Ohayon (Eds.), Biomechanics of living organs (pp. 243-265). Academic press.
Milićević, Z., Cuschieri, A., Xuereb, A., & Milićević, N. M. (1996). Stereological study of tissue compartments of the human spleen. Histology and Histopathology, 11(4), 833-836.
Molina, D. K., & DiMaio, V. J. (2012). Normal organ weights in men: Part II-the brain, lungs, liver, spleen, and kidneys. The American Journal of Forensic Medicine and Pathology, 33(4), 368-372. https://doi.org/10.1097/PAF.0b013e31823d29ad
Moore, E. E., Shackford, S. R., Pachter, H. L., McAninch, J. W., Browner, B. D., Champion, H. R., Flint, L. M., Gennarelli, T. A., Malangoni, M. A., & Ramenofsky, M. L. (1989). Organ injury scaling: Spleen, liver, and kidney. The Journal of Trauma, 29(12), 1664-1666.
Mouton, P. R. (2001). Principles and practices of unibiased stereology: An introduction for bioscientists. Johns Hopkins University Press.
Negoi, I., Paun, S., Stoica, B., Tanase, I., Vartic, M., Negoi, R. I., Hostiuc, S., & Beuran, M. (2016). Latest progress of research on acute abdominal injuries. Journal of Acute Disease, 5, 16-21. https://doi.org/10.1016/j.joad.2015.07.003
Nguyen, N. H., Du'o'ng, M. T., Tran, T. N., Phạm, P. T., Grottke, O., Tolba, R., & Staat, M. (2012). Influence of a freeze-thaw cycle on the stress-stretch curves of tissues of porcine abdominal organs. Journal of Biomechanics, 45(14), 2382-2386. https://doi.org/10.1016/j.jbiomech.2012.07.008
Nicolle, S., Noguer, L., & Palierne, J. F. (2012). Shear mechanical properties of the spleen: Experiment and analytical modelling.. Journal of the Mechanical Behavior of Biomedical Materials, 9, 130-136. https://doi.org/10.1016/j.jmbbm.2012.02.005
Pawluś, A., Inglot, M. S., Szymańska, K., Kaczorowski, K., Markiewicz, B. D., Kaczorowska, A., Gąsiorowski, J., Szymczak, A., Inglot, M., Bladowska, J., & Zaleska-Dorobisz, U. (2016). Shear wave elastography of the spleen: Evaluation of spleen stiffness in healthy volunteers. Abdominal Radiology (New York), 41(11), 2169-2174. https://doi.org/10.1007/s00261-016-0834-4
Razmjoo, A., Campbell, S., & Campbell-Kyureghyan, N. (2017). Prediction of the mechanical behavior of human spleen under blast forces using Finite Element method, in: 2017 IEEE Great Lakes Biomedical Conference, GLBC 2017 - Proceedings (p. 1). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/GLBC.2017.7928883
Shringi, N., Mathur, R., Kumar, V., Rohlan, K., & Ganguly, S. (2018). Histological studies on the spleen of large white Yorkshire Pig (Sus scrofa). Journal of Entomology and Zoology Studies, 6, 1142-1144. https://doi.org/10.22271/j.ento.6.1.257.1
Stingl, J., Báča, V., Cech, P., Kovanda, J., Kovandová, H., Mandys, V., Rejmontová, J., & Sosna, B. (2002). Morphology and some biomechanical properties of human liver and spleen. Surgical and Radiologic Anatomy, 24(5), 285-289. https://doi.org/10.1007/s00276-002-0054-1
Suri, S., Sasan, J. S., Sarma, K., & Charkraborty, D. (2017). Comparative gross and histomorphological studies on the spleen of sheep and goat of Jammu region of India. Exploratory Animal and Medical Research, 7, 179-183.
Tekle, Y., Hiware, S. D., Abreha, M., Muche, A., Ambaw, M., & Tegegne, Z. (2018). Determination of normal dimension of the spleen by ultrasound and its correlation with age. Asian Journal of Medical Research, 4, AT08-AT11. https://doi.org/10.21276/ajmr.2018.7.4.AT3
Tinkoff, G., Esposito, T. J., Reed, J., Kilgo, P., Fildes, J., Pasquale, M., & Meredith, J. W. (2008). American Association for the Surgery of Trauma Organ Injury Scale I: Spleen, liver, and kidney, validation based on the National Trauma Data Bank. Journal of the American College of Surgeons, 207(5), 646-655. https://doi.org/10.1016/j.jamcollsurg.2008.06.342
Tonar, Z., Janácek, J., Nedorost, L., Grill, R., Báca, V., & Zátura, F. (2009). Analysis of microcracks caused by drop shatter testing of porcine kidneys. Annals of Anatomy = Anatomischer Anzeiger, 191(3), 294-308. https://doi.org/10.1016/j.aanat.2009.02.005
Umale, S., Deck, C., Bourdet, N., Dhumane, P., Soler, L., Marescaux, J., & Willinger, R. (2013). Experimental mechanical characterization of abdominal organs: Liver, kidney & spleen. Journal of the Mechanical Behavior of Biomedical Materials, 17, 22-33. https://doi.org/10.1016/j.jmbbm.2012.07.010
Usende, I., Okafor, C., Aina, O., Onyiche, T., Durotoye, T., Omonuwa, A., Jarikre, T., Maina, M., & Falohun, O. (2014). Comparative studies and clinical significance of the spleens of Nigerian indigenous pig (Sus scrofa) and goat (Capra hircus). Journal of Veterinary Advances, 4, 604-612. https://doi.org/10.5455/jva.20140723040030
van Krieken, J. H., Te Velde, J., Hermans, J., & Welvaart, K. (1985). The splenic red pulp; a histomorphometrical study in splenectomy specimens embedded in methylmethacrylate. Histopathology, 9(4), 401-416. https://doi.org/10.1111/j.1365-2559.1985.tb02824.x
Vrtková, I. (2015). Genetic admixture analysis in Prestice Black-Pied pigs. Archives Animal Breeding., 58, 115-121. https://doi.org/10.5194/aab-58-115-2015
Wu, G., Gotthardt, M., & Gollasch, M. (2020). Assessment of nanoindentation in stiffness measurement of soft biomaterials: Kidney, liver, spleen and uterus. Scientific Reports, 10(1), 18784. https://doi.org/10.1038/s41598-020-75738-7
Yates, K. M., Lu, Y. C., & Untaroiu, C. D. (2016). Statistical shape analysis of the human spleen geometry for probabilistic occupant models. Journal of Biomechanics, 49(9), 1540-1546. https://doi.org/10.1016/j.jbiomech.2016.03.027