Kinetoplastid-specific X2-family kinesins interact with a kinesin-like pleckstrin homology domain protein that localizes to the trypanosomal microtubule quartet
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35766104
DOI
10.1111/mmi.14958
Knihovny.cz E-zdroje
- Klíčová slova
- Trypanosoma, cytoskeleton, kinesin, microtubule quartet, microtubules, morphogenesis,
- MeSH
- cytoskelet metabolismus MeSH
- kineziny * genetika metabolismus MeSH
- mikrotubuly metabolismus MeSH
- PH-doména MeSH
- protozoální proteiny * genetika metabolismus MeSH
- Trypanosoma brucei brucei * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kineziny * MeSH
- protozoální proteiny * MeSH
Kinesins are motor proteins found in all eukaryotic lineages that move along microtubules to mediate cellular processes such as mitosis and intracellular transport. In trypanosomatids, the kinesin superfamily has undergone a prominent expansion, resulting in one of the most diverse kinesin repertoires that includes the two kinetoplastid-restricted families X1 and X2. Here, we characterize in Trypanosoma brucei TbKifX2A, an orphaned X2 kinesin. TbKifX2A tightly interacts with TbPH1, a kinesin-like protein with a likely inactive motor domain, a rarely reported occurrence. Both TbKifX2A and TbPH1 localize to the microtubule quartet (MtQ), a characteristic but poorly understood cytoskeletal structure that wraps around the flagellar pocket as it extends to the cell body anterior. The proximal proteome of TbPH1 revealed two other interacting proteins, the flagellar pocket protein FP45 and intriguingly another X2 kinesin, TbKifX2C. Simultaneous ablation of TbKifX2A/TbPH1 results in the depletion of FP45 and TbKifX2C and also an expansion of the flagellar pocket, among other morphological defects. TbKifX2A is the first motor protein to be localized to the MtQ. The observation that TbKifX2C also associates with the MtQ suggests that the X2 kinesin family may have co-evolved with the MtQ, both kinetoplastid-specific traits.
Faculty of Science University of South Bohemia České Budějovice Czechia
Institute of Parasitology Biology Center Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Albisetti, A., Florimond, C., Landrein, N., Vidilaseris, K., Eggenspieler, M., Lesigang, J. et al. (2017) Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei. PLoS Pathogens, 13, e1006710.
Alcantara, C.D.L., Vidal, J.C., de Souza, W. & Cunha-e-Silva, N.L. (2017) The cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes disassembles during cell division. Journal of Cell Science, 130, 164-176.
Allingham, J.S., Sproul, L.R., Rayment, I. & Gilbert, S.P. (2007) Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell, 128, 1161-1172.
Amodeo, S., Kalichava, A., Fradera-Sola, A., Bertiaux-Lequoy, E., Guichard, P., Butter, F. et al. (2021) Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei. Journal of Cell Science, 134, jcs254300.
An, T. & Li, Z. (2018) An orphan kinesin controls trypanosome morphology transitions by targeting FLAM3 to the flagellum. PLoS Pathogens, 14, e1007101.
Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B.P., Carrington, M. et al. (2009) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38, D457-D462.
Benz, C., Stříbrná, E., Hashimi, H. & Lukeš, J. (2017) Dynamin-like proteins in Trypanosoma brucei: a division of labour between two paralogs? PLoS One, 12, e0177200.
Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D.C. et al. (2005) The genome of the African trypanosome Trypanosoma brucei. Science, 309, 416-422.
Bertiaux, E., Mallet, A., Rotureau, B. & Bastin, P. (2020) Intraflagellar transport during assembly of flagella of different length in Trypanosoma brucei isolated from tsetse flies. Journal of Cell Science, 133, jcs248989.
Burkhard, P., Stetefeld, J. & Strelkov, S.V. (2001) Coiled coils: a highly versatile protein folding motif. Trends in Cell Biology, 11, 82-88.
Cox, J. & Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367-1372.
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V. & Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10, 1794-1805.
Darzynkiewicz, Z., Juan, G., and Bedner, E. (1999) Determining cell cycle stages by flow cytometry. Current Protocols in Cell Biology 1: 8.4.1-8.4.18
Dean, S., Sunter, J., Wheeler, R.J., Hodkinson, I., Gluenz, E. & Gull, K. (2015) A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biology, 5, 140197.
Dean, S., Sunter, J.D. & Wheeler, R.J. (2017) TrypTag.org: a trypanosome genome-wide protein localisation resource. Trends in Parasitology, 33, 80-82.
Deltoro, D., Ortiz, D., Ordyan, M., Sippy, J., Oh, C.S., Keller, N. et al. (2016) Walker-a motif acts to coordinate ATP hydrolysis with motor output in viral DNA packaging. Journal of Molecular Biology, 428, 2709-2729.
Dong, X., Lim, T.K., Lin, Q. & He, C.Y. (2020) Basal body protein TbSAF1 is required for microtubule quartet Anchorage to the basal bodies inTrypanosoma brucei. mBio, 11, e00668-20.
Eddy, S.R. (2009) A new generation of homology search tools based on probabilistic inference. Genome Informatics, 23, 205-211.
El-Sayed, N.M., Myler, P.J., Bartholomeu, D.C., Nilsson, D., Aggarwal, G., Tran, A.N. et al. (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science, 309, 409-415.
Esson, H.J., Morriswood, B., Yavuz, S., Vidilaseris, K., Dong, G. & Warren, G. (2012) Morphology of the trypanosome bilobe, a novel cytoskeletal structure. Eukaryotic Cell, 11, 761-772.
Field, M.C. & Carrington, M. (2009) The trypanosome flagellar pocket. Nature Reviews Microbiology, 7, 775-786.
Field, M.C., Lumb, J.H., Adung'a, V.O., Jones, N.G. & Engstler, M. (2009) Chapter 1 macromolecular trafficking and immune evasion in African trypanosomes. International Review of Cell and Molecular Biology, 278, 1-67.
Fritz, M., Vanselow, J., Sauer, N., Lamer, S., Goos, C., Siegel, T.N. et al. (2015) Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve. Nucleic Acids Research, 43, 8013-8032.
Gallo, J.M. & Precigout, E. (1988) Tubulin expression in trypanosomes. Biology of the Cell, 64, 137-143.
Gallo, J.M., Précigout, E. & Schrével, J. (1988) Subcellular sequestration of an antigenically unique beta-tubulin. Cell Motility and the Cytoskeleton, 9, 175-183.
Gambarotto, D., Zwettler, F.U., Le Guennec, M., Schmidt-Cernohorska, M., Fortun, D., Borgers, S. et al. (2019) Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nature Methods, 16, 71-74.
Gheiratmand, L., Brasseur, A., Zhou, Q. & He, C.Y. (2013) Biochemical characterization of the bi-lobe reveals a continuous structural network linking the bi-lobe to other single-copied organelles in Trypanosoma brucei. The Journal of Biological Chemistry, 288, 3489-3499.
Gorilak, P., Pružincová, M., Vachova, H., Olšinová, M. & Varga, V. (2021) Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biology, 11, 210131.
Gull, K. (1999) The cytoskeleton of trypanosomatid parasites. Annual Review of Microbiology, 53, 629-655.
Hayes, P., Varga, V., Olego-Fernandez, S., Sunter, J., Ginger, M.L. & Gull, K. (2014) Modulation of a cytoskeletal calpain-like protein induces major transitions in trypanosome morphology. The Journal of Cell Biology, 206, 377-384.
Hilton, N.A., Sladewski, T.E., Perry, J.A., Pataki, Z., Sinclair-Davis, A.N., Muniz, R.S. et al. (2018) Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis. Molecular Microbiology, 109, 306-326.
Hirokawa, N. & Noda, Y. (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiological Reviews, 88, 1089-1118.
Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. (2009) Kinesin superfamily motor proteins and intracellular transport. Nature Reviews. Molecular Cell Biology, 10, 682-696.
Hu, H., Hu, L., Yu, Z., Chasse, A.E., Chu, F. & Li, Z. (2012) An orphan kinesin in trypanosomes cooperates with a kinetoplastid-specific kinesin to maintain cell morphology by regulating subpellicular microtubules. Journal of Cell Science, 125, 4126-4136.
Ivens, A.C., Peacock, C.S., Worthey, E.A., Murphy, L., Aggarwal, G., Berriman, M. et al. (2005) The genome of the kinetoplastid parasite, leishmania major. Science, 309, 436-442.
Jentzsch, J., Sabri, A., Speckner, K., Lallinger-Kube, G., Weiss, M. & Ersfeld, K. (2020) Microtubule polyglutamylation is important for regulating cytoskeletal architecture and motility in Trypanosoma brucei. Journal of Cell Science, 133, jcs248047.
Johnston, H.E., Yadav, K., Kirkpatrick, J.M., Biggs, G.S., Oxley, D., Kramer, H.B. et al. (2021) Solvent precipitation SP3 (SP4) enhances recovery for proteomics sample preparation without magnetic beads. bioRxiv 2021.09.24.461247.
Katoh, K., Misawa, K., Kuma, K.I. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059-3066.
Kaurov, I., Vancová, M., Schimanski, B., Cadena, L.R., Heller, J., Bílý, T. et al. (2018) The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Current Biology, 28, 3393-3407.e5.
Kim, D.I., Birendra, K.C., Zhu, W., Motamedchaboki, K., Doye, V. & Roux, K.J. (2014) Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proceedings of the National Academy of Sciences of the United States of America, 111, 2453-2461.
Kim, D.I., Jensen, S.C., Noble, K.A., Kc, B., Roux, K.H., Motamedchaboki, K. et al. (2016) An improved smaller biotin ligase for BioID proximity labeling. Molecular Biology of the Cell, 27, 1188-1196.
Kohl, L., Sherwin, T. & Gull, K. (1999) Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. The Journal of Eukaryotic Microbiology, 46, 105-109.
Kramer, S., Queiroz, R., Ellis, L., Webb, H., Hoheisel, J.D., Clayton, C. et al. (2008) Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2α phosphorylation at Thr169. Journal of Cell Science, 121, 3002-3014.
Lacomble, S., Vaughan, S., Gadelha, C., Morphew, M.K., Shaw, M.K., McIntosh, J.R. et al. (2009) Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. Journal of Cell Science, 122, 1081-1090.
Lacomble, S., Vaughan, S., Gadelha, C., Morphew, M.K., Shaw, M.K., McIntosh, J.R. et al. (2010) Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. Journal of Cell Science, 123, 2884-2891.
Li, Z., Lee, J.H., Chu, F., Burlingame, A.L., Günzl, A. & Wang, C.C. (2008) Identification of a novel chromosomal passenger complex and its unique localization during cytokinesis in Trypanosoma brucei. PLoS One, 3, e2354.
Lott, K., Li, J., Fisk, J.C., Wang, H., Aletta, J.M., Qu, J. et al. (2013) Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation. Journal of Proteomics, 91, 210-225.
Lukeš, J., Butenko, A., Hashimi, H., Maslov, D.A., Votýpka, J. & Yurchenko, V. (2018) Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends in Parasitology, 34, 466-480.
Marx, A., Hoenger, A. & Mandelkow, E. (2009) Structures of kinesin motor proteins. Cell Motility and the Cytoskeleton, 66, 958-966.
Morgan, G.W., Goulding, D. & Field, M.C. (2004) The single dynamin-like protein of Trypanosoma brucei regulates mitochondrial division and is not required for endocytosis. The Journal of Biological Chemistry, 279, 10692-10701.
Morriswood, B., Havlicek, K., Demmel, L., Yavuz, S., Sealey-Cardona, M., Vidilaseris, K. et al. (2013) Novel bilobe components in Trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryotic Cell, 12, 356-367.
Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274.
Poon, S.K., Peacock, L., Gibson, W., Gull, K. & Kelly, S. (2012) A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biology, 2, 110037.
Pyrih, J., Rašková, V., Škodová-Sveráková, I., Pánek, T. & Lukeš, J. (2020) ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype. PLoS One, 15, e0234918.
Redmond, S., Vadivelu, J. & Field, M.C. (2003) RNAit: An automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Molecular and Biochemical Parasitology, 128, 115-118.
Robinson, D.R., Sherwin, T., Ploubidou, A., Byard, E.H. & Gull, K. (1995) Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. The Journal of Cell Biology, 128, 1163-1172.
Rotureau, B., Subota, I. & Bastin, P. (2011) Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle. Cellular Microbiology, 13, 705-716.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T. et al. (2012) Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676-682.
Sherwin, T., Schneider, A., Sasse, R., Seebeck, T. & Gull, K. (1987) Distinct localization and cell cycle dependence of COOH terminally tyrosinolated α-tubulin in the microtubules of Trypanosoma brucei brucei. The Journal of Cell Biology, 104, 439-446.
Sinclair, A.N. & de Graffenried, C.L. (2019) More than microtubules: the structure and function of the subpellicular Array in Trypanosomatids. Trends in Parasitology, 35, 760-777.
Skalický, T., Dobáková, E., Wheeler, R.J., Tesařová, M., Flegontov, P., Jirsová, D. et al. (2017) Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proceedings of the National Academy of Sciences of the United States of America, 114, 11757-11762.
Sunter, J.D. & Gull, K. (2016) The flagellum attachment zone: ‘the cellular ruler’ of trypanosome morphology. Trends in Parasitology, 32, 309-324. Accessed December 14, 2020. https://pubmed.ncbi.nlm.nih.gov/26776656/
Tinti, M., Ferguson, M.A.J., Yurchenko, V. & Magez, S. (2022) (2022) visualisation of proteome-wide ordered protein abundances in Trypanosoma brucei. Wellcome Open Res, 734(7), 34.
Tyanova, S., Temu, T. & Cox, J. (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, 11(12), 2301-2319.
Urbaniak, M.D., Guther, M.L.S. & Ferguson, M.A.J. (2012) Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One, 7, e36619.
Varga, V., Moreira-Leite, F., Portman, N. & Gull, K. (2017) Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proceedings of the National Academy of Sciences of the United States of America, 114, E6546-E6555.
Wei, Y., Hu, H., Lun, Z.-R. & Li, Z. (2013) The cooperative roles of two Kinetoplastid-specific kinesins in cytokinesis and in maintaining cell morphology in bloodstream trypanosomes. PLoS One, 8, e73869.
Wheeler, R.J., Scheumann, N., Wickstead, B., Gull, K. & Vaughan, S. (2013) Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Molecular Microbiology, 90, 1339-1355.
Wheeler, R.J., Gull, K. & Sunter, J.D. (2019) Coordination of the cell cycle in trypanosomes. Annual Review of Microbiology, 73, 133-154.
Wickstead, B. & Gull, K. (2006) A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Molecular Biology of the Cell, 17, 1734-1743.
Wickstead, B., Ersfeld, K. & Gull, K. (2002) Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Molecular and Biochemical Parasitology, 125, 211-216.
Wickstead, B., Carrington, J.T., Gluenz, E. & Gull, K. (2010a) The expanded kinesin-13 repertoire of trypanosomes contains only one mitotic kinesin indicating multiple extra-nuclear roles. PLoS One, 5, e0015020.
Wickstead, B., Gull, K. & Richards, T.A. (2010b) Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evolutionary Biology, 10, 110.
Woods, A., Sherwin, T., Sasse, R., MacRae, T.H., Baines, A.J. & Gull, K. (1989) Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. Journal of Cell Science, 93(Pt 3), 491-500.
Woodward, R. & Gull, K. (1990) Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. Journal of Cell Science, 95(Pt 1), 49-57.
Zhou, Q., An, T., Pham, K.T.M., Hu, H. & Li, Z. (2018) The CIF1 protein is a master orchestrator of trypanosome cytokinesis that recruits several cytokinesis regulators to the cytokinesis initiation site. The Journal of Biological Chemistry, 293, 16177-16192.
Zoltner, M., Pino, R.C. del, and Field, M.C. (2020) Sorting the muck from the Brass: analysis of protein complexes and cell lysates. In Methods in molecular biology. New York, NY: Humana Press Inc., pp. 645-653