Comparative analysis of wavelet transform filtering systems for noise reduction in ultrasound images
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35797331
PubMed Central
PMC9262246
DOI
10.1371/journal.pone.0270745
PII: PONE-D-21-28525
Knihovny.cz E-resources
- MeSH
- Algorithms * MeSH
- Signal-To-Noise Ratio MeSH
- Ultrasonography MeSH
- Wavelet Analysis * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Wavelet transform (WT) is a commonly used method for noise suppression and feature extraction from biomedical images. The selection of WT system settings significantly affects the efficiency of denoising procedure. This comparative study analyzed the efficacy of the proposed WT system on real 292 ultrasound images from several areas of interest. The study investigates the performance of the system for different scaling functions of two basic wavelet bases, Daubechies and Symlets, and their efficiency on images artificially corrupted by three kinds of noise. To evaluate our extensive analysis, we used objective metrics, namely structural similarity index (SSIM), correlation coefficient, mean squared error (MSE), peak signal-to-noise ratio (PSNR) and universal image quality index (Q-index). Moreover, this study includes clinical insights on selected filtration outcomes provided by clinical experts. The results show that the efficiency of the filtration strongly depends on the specific wavelet system setting, type of ultrasound data, and the noise present. The findings presented may provide a useful guideline for researchers, software developers, and clinical professionals to obtain high quality images.
See more in PubMed
Cronin NJ, Finni T, Seynnes O. Using Deep Learning to Generate Synthetic B-Mode Musculoskeletal Ultrasound Images. Computer Methods and Programs in Biomedicine. 2020;196:105583. doi: 10.1016/j.cmpb.2020.105583 PubMed DOI
Kokil P, Sudharson S. Despeckling of Clinical Ultrasound Images Using Deep Residual Learning. Computer Methods and Programs in Biomedicine. 2020;194:105477. doi: 10.1016/j.cmpb.2020.105477 PubMed DOI
Gueziri HE, Santaguida C, Collins DL. The State-of-the-Art in Ultrasound-Guided Spine Interventions. Medical Image Analysis. 2020;65:101769. doi: 10.1016/j.media.2020.101769 PubMed DOI
Bargsten L, Schlaefer A. SpeckleGAN: A Generative Adversarial Network with an Adaptive Speckle Layer to Augment Limited Training Data for Ultrasound Image Processing. International Journal of Computer Assisted Radiology and Surgery. 2020;15(9):1427–1436. doi: 10.1007/s11548-020-02203-1 PubMed DOI PMC
Buffarini L, Rabal H, Cap N, Grumel E, Trivi M, Finger P. Tuneable Algorithms for Tracking Activity Images in Dynamic Speckle Applications. Optics and Lasers in Engineering. 2020;129:106084. doi: 10.1016/j.optlaseng.2020.106084 DOI
Puyo L, Paques M, Atlan M. Spatio-Temporal Filtering in Laser Doppler Holography for Retinal Blood Flow Imaging. Biomedical Optics Express. 2020;11(6):3274. doi: 10.1364/BOE.392699 PubMed DOI PMC
Zhang N, Ashikuzzaman M, Rivaz H. Clutter Suppression in Ultrasound: Performance Evaluation and Review of Low-Rank and Sparse Matrix Decomposition Methods. BioMedical Engineering OnLine. 2020;19(1):37. doi: 10.1186/s12938-020-00778-z PubMed DOI PMC
Mohd Sagheer SV, George SN. A Review on Medical Image Denoising Algorithms. Biomedical Signal Processing and Control. 2020;61:102036. doi: 10.1016/j.bspc.2020.102036 DOI
Nisha SS, Raja SP, Kasthuri A. Static Thresholded Pulse Coupled Neural Networks in Contourlet Domain—A New Framework for Medical Image Denoising. International Journal of Image and Graphics. 2020;20(03):2050025. doi: 10.1142/S0219467820500254 DOI
Kumar M, Mishra SK. A Comprehensive Review on Nature Inspired Neural Network Based Adaptive Filter for Eliminating Noise in Medical Images. Current Medical Imaging Formerly Current Medical Imaging Reviews. 2020;16(4):278–287. doi: 10.2174/1573405614666180801113345 PubMed DOI
Devakumari D, Punithavathi V. Noise Removal in Breast Cancer Using Hybrid De-Noising Filter for Mammogram Images. In: Smys S, Tavares JMRS, Balas VE, Iliyasu AM, editors. Computational Vision and Bio-Inspired Computing. vol. 1108. Cham: Springer International Publishing; 2020. p. 109–119.
Alla Takam C, Samba O, Tchagna Kouanou A, Tchiotsop D. Spark Architecture for Deep Learning-Based Dose Optimization in Medical Imaging. Informatics in Medicine Unlocked. 2020;19:100335. doi: 10.1016/j.imu.2020.100335 DOI
Gupta M, Taneja H, Chand L. Performance Enhancement and Analysis of Filters in Ultrasound Image Denoising. Procedia Computer Science. 2018;132:643–652. doi: 10.1016/j.procs.2018.05.063 DOI
JNTUH University, Telangana, India and also Dept of ECE, S R Engineering College (Autonomous), Warangal, India, Kollem S, Reddy KRL, Rao DS. A Review of Image Denoising and Segmentation Methods Based on Medical Images. International Journal of Machine Learning and Computing. 2019;9(3):288–295. doi: 10.18178/ijmlc.2019.9.3.800 DOI
Sheeba MC, Seldev Christopher DC. A Review On Video Denoising Methods. In: 2019 International Conference on Recent Advances in Energy-Efficient Computing and Communication (ICRAECC). Nagercoil, India: IEEE; 2019. p. 1–6.
Thanh D, Surya P, Hieu LM. A Review on CT and X-Ray Images Denoising Methods. Informatica. 2019;43(2). doi: 10.31449/inf.v43i2.2179 DOI
Prasath VBS. Quantum Noise Removal in X-Ray Images with Adaptive Total Variation Regularization. Informatica. 2017;28(3):505–515. doi: 10.15388/Informatica.2017.141 DOI
Karunharan KA, Prakash O. Automatic Preprocessing of Blood Cells Using Edge Detectors for the Detection of Leukemia. International Journal of Pharmaceutical Research. 2019;11(1). doi: 10.31838/ijpr/2019.11.01.092 DOI
Sofuni A, Tsuchiya T, Itoi T. Ultrasound Diagnosis of Pancreatic Solid Tumors. Journal of Medical Ultrasonics. 2020;47(3):359–376. doi: 10.1007/s10396-019-00968-w PubMed DOI
Rani VMK, Dhenakaran SS. Classification of Ultrasound Breast Cancer Tumor Images Using Neural Learning and Predicting the Tumor Growth Rate. Multimedia Tools and Applications. 2020;79(23-24):16967–16985. doi: 10.1007/s11042-019-7487-6 DOI
Loizou CP, Theofanous C, Pantziaris M, Kasparis T. Despeckle Filtering Software Toolbox for Ultrasound Imaging of the Common Carotid Artery. Computer Methods and Programs in Biomedicine. 2014;114(1):109–124. doi: 10.1016/j.cmpb.2014.01.018 PubMed DOI
Mugasa H, Dua S, Koh JEW, Hagiwara Y, Lih OS, Madla C, et al.. An Adaptive Feature Extraction Model for Classification of Thyroid Lesions in Ultrasound Images. Pattern Recognition Letters. 2020;131:463–473. doi: 10.1016/j.patrec.2020.02.009 DOI
Han S, Zhang Y, Wu K, He B, Zhang K, Liang H. Adaptive Ultrasound Tissue Harmonic Imaging Based on an Improved Ensemble Empirical Mode Decomposition Algorithm. Ultrasonic Imaging. 2020;42(2):57–73. doi: 10.1177/0161734619900147 PubMed DOI
Mei K, Hu B, Fei B, Qin B. Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation. IEEE Transactions on Image Processing. 2020;29:2845–2859. doi: 10.1109/TIP.2019.2953361 PubMed DOI PMC
Nayak R, Fatemi M, Alizad A. Adaptive Background Noise Bias Suppression in Contrast-Free Ultrasound Microvascular Imaging. Physics in Medicine & Biology. 2019;64(24):245015. doi: 10.1088/1361-6560/ab5879 PubMed DOI PMC
Loupas T, McDicken WN, Allan PL. An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images. IEEE Transactions on Circuits and Systems. 1989;36(1):129–135. doi: 10.1109/31.16577 DOI
Xu H, Zhang Q, Dong H, Jiang X, Shi J. Speckle Suppression of Ultrasonography Using Maximum Likelihood Estimation and Weighted Nuclear Norm Minimization. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, HI: IEEE; 2018. p. 874–877. PubMed
Li H, Wu J, Miao A, Yu P, Chen J, Zhang Y. Rayleigh-Maximum-Likelihood Bilateral Filter for Ultrasound Image Enhancement. BioMedical Engineering OnLine. 2017;16(1):46. doi: 10.1186/s12938-017-0336-9 PubMed DOI PMC
Yongjian Yu, Acton ST. Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing. 2002;11(11):1260–1270. doi: 10.1109/TIP.2002.804276 PubMed DOI
Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N. Enhancement of the Ultrasound Images by Modified Anisotropic Diffusion Method. Medical & Biological Engineering & Computing. 2010;48(12):1281–1291. doi: 10.1007/s11517-010-0650-x PubMed DOI
Choi H, Jeong J. Despeckling Algorithm for Removing Speckle Noise from Ultrasound Images. Symmetry. 2020;12(6):938. doi: 10.3390/sym12060938 DOI
Donoho DL, Johnstone IM. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika. 1994;81(3):425–455. doi: 10.1093/biomet/81.3.425 DOI
Leal AS, Paiva HM. A New Wavelet Family for Speckle Noise Reduction in Medical Ultrasound Images. Measurement. 2019;140:572–581. doi: 10.1016/j.measurement.2019.03.050 DOI
Randhawa SK, Sunkaria RK, Puthooran E. Despeckling of Ultrasound Images Using Novel Adaptive Wavelet Thresholding Function. Multidimensional Systems and Signal Processing. 2019;30(3):1545–1561. doi: 10.1007/s11045-018-0616-y DOI
Mei F, Zhang D, Yang Y. Improved Non-Local Self-Similarity Measures for Effective Speckle Noise Reduction in Ultrasound Images. Computer Methods and Programs in Biomedicine. 2020;196:105670. doi: 10.1016/j.cmpb.2020.105670 PubMed DOI
Cüneyitoğlu Özkul M, Mumcuoğlu ÜE, Sancak İT. Single-Image Bayesian Restoration and Multi-Image Super-Resolution Restoration for B-Mode Ultrasound Using an Accurate System Model Involving Correlated Nature of the Speckle Noise. Ultrasonic Imaging. 2019;41(6):368–386. doi: 10.1177/0161734619865961 PubMed DOI
Nagaraj Y, Narasimhadhan AV. Comparison of Edge Detection Algorithms in the Framework of Despeckling Carotid Ultrasound Images Based on Bayesian Estimation Approach. In: Rameshan R, Arora C, Dutta Roy S, editors. Computer Vision, Pattern Recognition, Image Processing, and Graphics. vol. 841. Singapore: Springer Singapore; 2018. p. 424–435.
Zhang K, Zuo W, Zhang L. FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Transactions on Image Processing. 2018;27(9):4608–4622. doi: 10.1109/TIP.2018.2839891 PubMed DOI
Chang Y, Yan L, Chen M, Fang H, Zhong S. Two-Stage Convolutional Neural Network for Medical Noise Removal via Image Decomposition. IEEE Transactions on Instrumentation and Measurement. 2020;69(6):2707–2721. doi: 10.1109/TIM.2019.2925881 DOI
Li L, Yu X, Jin Z, Zhao Z, Zhuang X, Liu Z. FDnCNN-Based Image Denoising for Multi-Labfel Localization Measurement. Measurement. 2020;152:107367. doi: 10.1016/j.measurement.2019.107367 DOI
Mishra D, Tyagi S, Chaudhury S, Sarkar M, Singh Soin A. Despeckling CNN with Ensembles of Classical Outputs. In: 2018 24th International Conference on Pattern Recognition (ICPR). Beijing: IEEE; 2018. p. 3802–3807.
Dong G, Ma Y, Basu A. Feature-Guided CNN for Denoising Images From Portable Ultrasound Devices. IEEE Access. 2021;9:28272–28281. doi: 10.1109/ACCESS.2021.3059003 DOI
Duarte-Salazar CA, Castro-Ospina AE, Becerra MA, Delgado-Trejos E. Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview. IEEE Access. 2020;8:15983–15999. doi: 10.1109/ACCESS.2020.2967178 DOI
Rezatofighi SH, Soltanian-Zadeh H, Sharifian R, Zoroofi RA. A New Approach to White Blood Cell Nucleus Segmentation Based on Gram-Schmidt Orthogonalization. In: 2009 International Conference on Digital Image Processing. Bangkok, Thailand: IEEE; 2009. p. 107–111.
Egmont-Petersen M, Schreiner U, Tromp SC, Lehmann TM, Slaaf DW, Arts T. Detection of Leukocytes in Contact with the Vessel Wall from in Vivo Microscope Recordings Using a Neural Network. IEEE Transactions on Biomedical Engineering. 2000;47(7):941–951. doi: 10.1109/10.846689 PubMed DOI
Andria G, Attivissimo F, Lanzolla AML, Savino M. A Suitable Threshold for Speckle Reduction in Ultrasound Images. IEEE Transactions on Instrumentation and Measurement. 2013;62(8):2270–2279. doi: 10.1109/TIM.2013.2255978 DOI
Zhou Wang, Bovik AC. A Universal Image Quality Index. IEEE Signal Processing Letters. 2002;9(3):81–84. doi: 10.1109/97.995823 DOI
Adamo F, Andria G, Attivissimo F, Lanzolla AML, Spadavecchia M. A Comparative Study on Mother Wavelet Selection in Ultrasound Image Denoising. Measurement. 2013;46(8):2447–2456. doi: 10.1016/j.measurement.2013.04.064 DOI
Birgé L, Massart P. From Model Selection to Adaptive Estimation. In: Pollard D, Torgersen E, Yang GL, editors. Festschrift for Lucien Le Cam. New York, NY: Springer New York; 1997. p. 55–87.
Arnal J, Mayzel I. Parallel Techniques for Speckle Noise Reduction in Medical Ultrasound Images. Advances in Engineering Software. 2020;148:102867. doi: 10.1016/j.advengsoft.2020.102867 DOI
Hore A, Ziou D. Image Quality Metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE; 2010. p. 2366–2369.
Sara U, Akter M, Uddin MS. Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. Journal of Computer and Communications. 2019;07(03):8–18. doi: 10.4236/jcc.2019.73002 DOI
Setiadi DRIM. PSNR vs SSIM: Imperceptibility Quality Assessment for Image Steganography. Multimedia Tools and Applications. 2021;80(6):8423–8444. doi: 10.1007/s11042-020-10035-z DOI
Mason A, Rioux J, Clarke SE, Costa A, Schmidt M, Keough V, et al.. Comparison of Objective Image Quality Metrics to Expert Radiologists’ Scoring of Diagnostic Quality of MR Images. IEEE Transactions on Medical Imaging. 2020;39(4):1064–1072. doi: 10.1109/TMI.2019.2930338 PubMed DOI
Andria G, Attivissimo F, Cavone G, Giaquinto N, Lanzolla AML. Linear Filtering of 2-D Wavelet Coefficients for Denoising Ultrasound Medical Images. Measurement. 2012;45(7):1792–1800. doi: 10.1016/j.measurement.2012.04.005 DOI
Gai S, Zhang B, Yang C, Yu L. Speckle Noise Reduction in Medical Ultrasound Image Using Monogenic Wavelet and Laplace Mixture Distribution. Digital Signal Processing. 2018;72:192–207. doi: 10.1016/j.dsp.2017.10.006 DOI
Lévêque L, Outtas M, Liu H, Zhang L. Comparative Study of the Methodologies Used for Subjective Medical Image Quality Assessment. Physics in Medicine & Biology. 2021;66(15):15TR02. doi: 10.1088/1361-6560/ac1157 PubMed DOI