• This record comes from PubMed

Comparative analysis of wavelet transform filtering systems for noise reduction in ultrasound images

. 2022 ; 17 (7) : e0270745. [epub] 20220707

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Wavelet transform (WT) is a commonly used method for noise suppression and feature extraction from biomedical images. The selection of WT system settings significantly affects the efficiency of denoising procedure. This comparative study analyzed the efficacy of the proposed WT system on real 292 ultrasound images from several areas of interest. The study investigates the performance of the system for different scaling functions of two basic wavelet bases, Daubechies and Symlets, and their efficiency on images artificially corrupted by three kinds of noise. To evaluate our extensive analysis, we used objective metrics, namely structural similarity index (SSIM), correlation coefficient, mean squared error (MSE), peak signal-to-noise ratio (PSNR) and universal image quality index (Q-index). Moreover, this study includes clinical insights on selected filtration outcomes provided by clinical experts. The results show that the efficiency of the filtration strongly depends on the specific wavelet system setting, type of ultrasound data, and the noise present. The findings presented may provide a useful guideline for researchers, software developers, and clinical professionals to obtain high quality images.

See more in PubMed

Cronin NJ, Finni T, Seynnes O. Using Deep Learning to Generate Synthetic B-Mode Musculoskeletal Ultrasound Images. Computer Methods and Programs in Biomedicine. 2020;196:105583. doi: 10.1016/j.cmpb.2020.105583 PubMed DOI

Kokil P, Sudharson S. Despeckling of Clinical Ultrasound Images Using Deep Residual Learning. Computer Methods and Programs in Biomedicine. 2020;194:105477. doi: 10.1016/j.cmpb.2020.105477 PubMed DOI

Gueziri HE, Santaguida C, Collins DL. The State-of-the-Art in Ultrasound-Guided Spine Interventions. Medical Image Analysis. 2020;65:101769. doi: 10.1016/j.media.2020.101769 PubMed DOI

Bargsten L, Schlaefer A. SpeckleGAN: A Generative Adversarial Network with an Adaptive Speckle Layer to Augment Limited Training Data for Ultrasound Image Processing. International Journal of Computer Assisted Radiology and Surgery. 2020;15(9):1427–1436. doi: 10.1007/s11548-020-02203-1 PubMed DOI PMC

Buffarini L, Rabal H, Cap N, Grumel E, Trivi M, Finger P. Tuneable Algorithms for Tracking Activity Images in Dynamic Speckle Applications. Optics and Lasers in Engineering. 2020;129:106084. doi: 10.1016/j.optlaseng.2020.106084 DOI

Puyo L, Paques M, Atlan M. Spatio-Temporal Filtering in Laser Doppler Holography for Retinal Blood Flow Imaging. Biomedical Optics Express. 2020;11(6):3274. doi: 10.1364/BOE.392699 PubMed DOI PMC

Zhang N, Ashikuzzaman M, Rivaz H. Clutter Suppression in Ultrasound: Performance Evaluation and Review of Low-Rank and Sparse Matrix Decomposition Methods. BioMedical Engineering OnLine. 2020;19(1):37. doi: 10.1186/s12938-020-00778-z PubMed DOI PMC

Mohd Sagheer SV, George SN. A Review on Medical Image Denoising Algorithms. Biomedical Signal Processing and Control. 2020;61:102036. doi: 10.1016/j.bspc.2020.102036 DOI

Nisha SS, Raja SP, Kasthuri A. Static Thresholded Pulse Coupled Neural Networks in Contourlet Domain—A New Framework for Medical Image Denoising. International Journal of Image and Graphics. 2020;20(03):2050025. doi: 10.1142/S0219467820500254 DOI

Kumar M, Mishra SK. A Comprehensive Review on Nature Inspired Neural Network Based Adaptive Filter for Eliminating Noise in Medical Images. Current Medical Imaging Formerly Current Medical Imaging Reviews. 2020;16(4):278–287. doi: 10.2174/1573405614666180801113345 PubMed DOI

Devakumari D, Punithavathi V. Noise Removal in Breast Cancer Using Hybrid De-Noising Filter for Mammogram Images. In: Smys S, Tavares JMRS, Balas VE, Iliyasu AM, editors. Computational Vision and Bio-Inspired Computing. vol. 1108. Cham: Springer International Publishing; 2020. p. 109–119.

Alla Takam C, Samba O, Tchagna Kouanou A, Tchiotsop D. Spark Architecture for Deep Learning-Based Dose Optimization in Medical Imaging. Informatics in Medicine Unlocked. 2020;19:100335. doi: 10.1016/j.imu.2020.100335 DOI

Gupta M, Taneja H, Chand L. Performance Enhancement and Analysis of Filters in Ultrasound Image Denoising. Procedia Computer Science. 2018;132:643–652. doi: 10.1016/j.procs.2018.05.063 DOI

JNTUH University, Telangana, India and also Dept of ECE, S R Engineering College (Autonomous), Warangal, India, Kollem S, Reddy KRL, Rao DS. A Review of Image Denoising and Segmentation Methods Based on Medical Images. International Journal of Machine Learning and Computing. 2019;9(3):288–295. doi: 10.18178/ijmlc.2019.9.3.800 DOI

Sheeba MC, Seldev Christopher DC. A Review On Video Denoising Methods. In: 2019 International Conference on Recent Advances in Energy-Efficient Computing and Communication (ICRAECC). Nagercoil, India: IEEE; 2019. p. 1–6.

Thanh D, Surya P, Hieu LM. A Review on CT and X-Ray Images Denoising Methods. Informatica. 2019;43(2). doi: 10.31449/inf.v43i2.2179 DOI

Prasath VBS. Quantum Noise Removal in X-Ray Images with Adaptive Total Variation Regularization. Informatica. 2017;28(3):505–515. doi: 10.15388/Informatica.2017.141 DOI

Karunharan KA, Prakash O. Automatic Preprocessing of Blood Cells Using Edge Detectors for the Detection of Leukemia. International Journal of Pharmaceutical Research. 2019;11(1). doi: 10.31838/ijpr/2019.11.01.092 DOI

Sofuni A, Tsuchiya T, Itoi T. Ultrasound Diagnosis of Pancreatic Solid Tumors. Journal of Medical Ultrasonics. 2020;47(3):359–376. doi: 10.1007/s10396-019-00968-w PubMed DOI

Rani VMK, Dhenakaran SS. Classification of Ultrasound Breast Cancer Tumor Images Using Neural Learning and Predicting the Tumor Growth Rate. Multimedia Tools and Applications. 2020;79(23-24):16967–16985. doi: 10.1007/s11042-019-7487-6 DOI

Loizou CP, Theofanous C, Pantziaris M, Kasparis T. Despeckle Filtering Software Toolbox for Ultrasound Imaging of the Common Carotid Artery. Computer Methods and Programs in Biomedicine. 2014;114(1):109–124. doi: 10.1016/j.cmpb.2014.01.018 PubMed DOI

Mugasa H, Dua S, Koh JEW, Hagiwara Y, Lih OS, Madla C, et al.. An Adaptive Feature Extraction Model for Classification of Thyroid Lesions in Ultrasound Images. Pattern Recognition Letters. 2020;131:463–473. doi: 10.1016/j.patrec.2020.02.009 DOI

Han S, Zhang Y, Wu K, He B, Zhang K, Liang H. Adaptive Ultrasound Tissue Harmonic Imaging Based on an Improved Ensemble Empirical Mode Decomposition Algorithm. Ultrasonic Imaging. 2020;42(2):57–73. doi: 10.1177/0161734619900147 PubMed DOI

Mei K, Hu B, Fei B, Qin B. Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation. IEEE Transactions on Image Processing. 2020;29:2845–2859. doi: 10.1109/TIP.2019.2953361 PubMed DOI PMC

Nayak R, Fatemi M, Alizad A. Adaptive Background Noise Bias Suppression in Contrast-Free Ultrasound Microvascular Imaging. Physics in Medicine & Biology. 2019;64(24):245015. doi: 10.1088/1361-6560/ab5879 PubMed DOI PMC

Loupas T, McDicken WN, Allan PL. An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images. IEEE Transactions on Circuits and Systems. 1989;36(1):129–135. doi: 10.1109/31.16577 DOI

Xu H, Zhang Q, Dong H, Jiang X, Shi J. Speckle Suppression of Ultrasonography Using Maximum Likelihood Estimation and Weighted Nuclear Norm Minimization. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu, HI: IEEE; 2018. p. 874–877. PubMed

Li H, Wu J, Miao A, Yu P, Chen J, Zhang Y. Rayleigh-Maximum-Likelihood Bilateral Filter for Ultrasound Image Enhancement. BioMedical Engineering OnLine. 2017;16(1):46. doi: 10.1186/s12938-017-0336-9 PubMed DOI PMC

Yongjian Yu, Acton ST. Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing. 2002;11(11):1260–1270. doi: 10.1109/TIP.2002.804276 PubMed DOI

Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N. Enhancement of the Ultrasound Images by Modified Anisotropic Diffusion Method. Medical & Biological Engineering & Computing. 2010;48(12):1281–1291. doi: 10.1007/s11517-010-0650-x PubMed DOI

Choi H, Jeong J. Despeckling Algorithm for Removing Speckle Noise from Ultrasound Images. Symmetry. 2020;12(6):938. doi: 10.3390/sym12060938 DOI

Donoho DL, Johnstone IM. Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika. 1994;81(3):425–455. doi: 10.1093/biomet/81.3.425 DOI

Leal AS, Paiva HM. A New Wavelet Family for Speckle Noise Reduction in Medical Ultrasound Images. Measurement. 2019;140:572–581. doi: 10.1016/j.measurement.2019.03.050 DOI

Randhawa SK, Sunkaria RK, Puthooran E. Despeckling of Ultrasound Images Using Novel Adaptive Wavelet Thresholding Function. Multidimensional Systems and Signal Processing. 2019;30(3):1545–1561. doi: 10.1007/s11045-018-0616-y DOI

Mei F, Zhang D, Yang Y. Improved Non-Local Self-Similarity Measures for Effective Speckle Noise Reduction in Ultrasound Images. Computer Methods and Programs in Biomedicine. 2020;196:105670. doi: 10.1016/j.cmpb.2020.105670 PubMed DOI

Cüneyitoğlu Özkul M, Mumcuoğlu ÜE, Sancak İT. Single-Image Bayesian Restoration and Multi-Image Super-Resolution Restoration for B-Mode Ultrasound Using an Accurate System Model Involving Correlated Nature of the Speckle Noise. Ultrasonic Imaging. 2019;41(6):368–386. doi: 10.1177/0161734619865961 PubMed DOI

Nagaraj Y, Narasimhadhan AV. Comparison of Edge Detection Algorithms in the Framework of Despeckling Carotid Ultrasound Images Based on Bayesian Estimation Approach. In: Rameshan R, Arora C, Dutta Roy S, editors. Computer Vision, Pattern Recognition, Image Processing, and Graphics. vol. 841. Singapore: Springer Singapore; 2018. p. 424–435.

Zhang K, Zuo W, Zhang L. FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising. IEEE Transactions on Image Processing. 2018;27(9):4608–4622. doi: 10.1109/TIP.2018.2839891 PubMed DOI

Chang Y, Yan L, Chen M, Fang H, Zhong S. Two-Stage Convolutional Neural Network for Medical Noise Removal via Image Decomposition. IEEE Transactions on Instrumentation and Measurement. 2020;69(6):2707–2721. doi: 10.1109/TIM.2019.2925881 DOI

Li L, Yu X, Jin Z, Zhao Z, Zhuang X, Liu Z. FDnCNN-Based Image Denoising for Multi-Labfel Localization Measurement. Measurement. 2020;152:107367. doi: 10.1016/j.measurement.2019.107367 DOI

Mishra D, Tyagi S, Chaudhury S, Sarkar M, Singh Soin A. Despeckling CNN with Ensembles of Classical Outputs. In: 2018 24th International Conference on Pattern Recognition (ICPR). Beijing: IEEE; 2018. p. 3802–3807.

Dong G, Ma Y, Basu A. Feature-Guided CNN for Denoising Images From Portable Ultrasound Devices. IEEE Access. 2021;9:28272–28281. doi: 10.1109/ACCESS.2021.3059003 DOI

Duarte-Salazar CA, Castro-Ospina AE, Becerra MA, Delgado-Trejos E. Speckle Noise Reduction in Ultrasound Images for Improving the Metrological Evaluation of Biomedical Applications: An Overview. IEEE Access. 2020;8:15983–15999. doi: 10.1109/ACCESS.2020.2967178 DOI

Rezatofighi SH, Soltanian-Zadeh H, Sharifian R, Zoroofi RA. A New Approach to White Blood Cell Nucleus Segmentation Based on Gram-Schmidt Orthogonalization. In: 2009 International Conference on Digital Image Processing. Bangkok, Thailand: IEEE; 2009. p. 107–111.

Egmont-Petersen M, Schreiner U, Tromp SC, Lehmann TM, Slaaf DW, Arts T. Detection of Leukocytes in Contact with the Vessel Wall from in Vivo Microscope Recordings Using a Neural Network. IEEE Transactions on Biomedical Engineering. 2000;47(7):941–951. doi: 10.1109/10.846689 PubMed DOI

Andria G, Attivissimo F, Lanzolla AML, Savino M. A Suitable Threshold for Speckle Reduction in Ultrasound Images. IEEE Transactions on Instrumentation and Measurement. 2013;62(8):2270–2279. doi: 10.1109/TIM.2013.2255978 DOI

Zhou Wang, Bovik AC. A Universal Image Quality Index. IEEE Signal Processing Letters. 2002;9(3):81–84. doi: 10.1109/97.995823 DOI

Adamo F, Andria G, Attivissimo F, Lanzolla AML, Spadavecchia M. A Comparative Study on Mother Wavelet Selection in Ultrasound Image Denoising. Measurement. 2013;46(8):2447–2456. doi: 10.1016/j.measurement.2013.04.064 DOI

Birgé L, Massart P. From Model Selection to Adaptive Estimation. In: Pollard D, Torgersen E, Yang GL, editors. Festschrift for Lucien Le Cam. New York, NY: Springer New York; 1997. p. 55–87.

Arnal J, Mayzel I. Parallel Techniques for Speckle Noise Reduction in Medical Ultrasound Images. Advances in Engineering Software. 2020;148:102867. doi: 10.1016/j.advengsoft.2020.102867 DOI

Hore A, Ziou D. Image Quality Metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE; 2010. p. 2366–2369.

Sara U, Akter M, Uddin MS. Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. Journal of Computer and Communications. 2019;07(03):8–18. doi: 10.4236/jcc.2019.73002 DOI

Setiadi DRIM. PSNR vs SSIM: Imperceptibility Quality Assessment for Image Steganography. Multimedia Tools and Applications. 2021;80(6):8423–8444. doi: 10.1007/s11042-020-10035-z DOI

Mason A, Rioux J, Clarke SE, Costa A, Schmidt M, Keough V, et al.. Comparison of Objective Image Quality Metrics to Expert Radiologists’ Scoring of Diagnostic Quality of MR Images. IEEE Transactions on Medical Imaging. 2020;39(4):1064–1072. doi: 10.1109/TMI.2019.2930338 PubMed DOI

Andria G, Attivissimo F, Cavone G, Giaquinto N, Lanzolla AML. Linear Filtering of 2-D Wavelet Coefficients for Denoising Ultrasound Medical Images. Measurement. 2012;45(7):1792–1800. doi: 10.1016/j.measurement.2012.04.005 DOI

Gai S, Zhang B, Yang C, Yu L. Speckle Noise Reduction in Medical Ultrasound Image Using Monogenic Wavelet and Laplace Mixture Distribution. Digital Signal Processing. 2018;72:192–207. doi: 10.1016/j.dsp.2017.10.006 DOI

Lévêque L, Outtas M, Liu H, Zhang L. Comparative Study of the Methodologies Used for Subjective Medical Image Quality Assessment. Physics in Medicine & Biology. 2021;66(15):15TR02. doi: 10.1088/1361-6560/ac1157 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...