Cathepsin B p.Gly284Val Variant in Parkinson's Disease Pathogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
U19 AG063911
NIA NIH HHS - United States
1U19AG063911
NIH HHS - United States
R01 NS085070
NINDS NIH HHS - United States
R56 AG062556
NIA NIH HHS - United States
R01 NS110085
NINDS NIH HHS - United States
U54 NS110435
NINDS NIH HHS - United States
RF1 NS085070
NINDS NIH HHS - United States
PubMed
35806091
PubMed Central
PMC9266886
DOI
10.3390/ijms23137086
PII: ijms23137086
Knihovny.cz E-zdroje
- Klíčová slova
- CTSB, Parkinson’s disease, familial forms, fibroblasts, monogenic forms,
- MeSH
- genotyp MeSH
- heterozygot MeSH
- kathepsin B genetika metabolismus MeSH
- lidé MeSH
- Parkinsonova nemoc * genetika MeSH
- penetrance MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CTSB protein, human MeSH Prohlížeč
- kathepsin B MeSH
Parkinson's disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk.
Bielanski Hospital 01 809 Warsaw Poland
Department of Clinical Genomics Mayo Clinic Florida Jacksonville FL 32224 USA
Department of Medical Genetics Institute of Mother and Child 01 211 Warsaw Poland
Department of Neurology Faculty of Health Science Medical University of Warsaw 02 091 Warsaw Poland
Department of Neurology Jagiellonian University Medical College 31 008 Krakow Poland
Department of Neurology Mayo Clinic Florida Jacksonville FL 32224 USA
Department of Neurology St Adalbert Hospital Copernicus PL Ltd 80 462 Gdansk Poland
Department of Neuroscience Mayo Clinic Florida Jacksonville FL 32224 USA
Institute of Genetics and Biotechnology Faculty of Biology University of Warsaw 00 927 Warsaw Poland
Lviv Regional Clinical Hospital 79010 Lviv Ukraine
Neuroscience PhD Program Mayo Graduate School Mayo Clinic Florida Jacksonville FL 32224 USA
School of Medicine and Medical Science University College Dublin D04 V1W8 Dublin Ireland
St Anne's University Hospital and Faculty of Medicine Masaryk University 601 77 Brno Czech Republic
The Dublin Neurological Institute Mater Misericordiae University Hospital D07 W7XF Dublin Ireland
Uzhhorod National University 88 000 Uzhhorod Ukraine
Uzhhorod Regional Clinical Centre of Neurosurgery and Neurology 88018 Uzhhorod Ukraine
Zobrazit více v PubMed
Balestrino R., Schapira A. Parkinson disease. Eur. J. Neurol. 2020;27:27–42. doi: 10.1111/ene.14108. PubMed DOI
Postuma R.B., Berg D., Stern M., Poewe W., Olanow C.W., Oertel W., Obeso J., Marek K., Litvan I., Lang A.E. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424. PubMed DOI
Dickson D.W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 2018;46:S30–S33. doi: 10.1016/j.parkreldis.2017.07.033. PubMed DOI PMC
Karimi-Moghadam A., Charsouei S., Bell B., Jabalameli M.R. Parkinson disease from mendelian forms to genetic susceptibility: New molecular insights into the neurodegeneration process. Cell. Mol. Neurobiol. 2018;38:1153–1178. doi: 10.1007/s10571-018-0587-4. PubMed DOI PMC
Nalls M.A., Blauwendraat C., Vallerga C.L., Heilbron K., Bandres-Ciga S., Chang D., Tan M., Kia D.A., Noyce A.J., Xue A. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18:1091–1102. doi: 10.1016/S1474-4422(19)30320-5. PubMed DOI PMC
Milanowski Ł.M., Ross O.A., Friedman A., Hoffman-Zacharska D., Gorka-Skoczylas P., Jurek M., Koziorowski D., Wszolek Z.K. Genetics of Parkinson’s disease in the Polish population. Neurol. Neurochir. Pol. 2021;55:241–252. doi: 10.5603/PJNNS.a2021.0013. PubMed DOI
Siuda J., Boczarska-Jedynak M., Budrewicz S., Figura M., Fiszer U., Gajos A., Gorzkowska A., Koziorowska-Gawron E., Koziorowski D., Krygowska-Wajs A., et al. Validation of the Polish version of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Neurol. I Neurochir. Pol. 2020;54:416–425. doi: 10.5603/PJNNS.a2020.0049. PubMed DOI
Wissemann W.T., Hill-Burns E.M., Zabetian C.P., Factor S.A., Patsopoulos N., Hoglund B., Holcomb C., Donahue R.J., Thomson G., Erlich H., et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. Am. J. Hum. Genet. 2013;93:984–993. doi: 10.1016/j.ajhg.2013.10.009. PubMed DOI PMC
Porrini V., Mota M., Parrella E., Bellucci A., Benarese M., Faggi L., Tonin P., Spano P.F., Pizzi M. Mild Inflammatory Profile without Gliosis in the c-Rel Deficient Mouse Modeling a Late-Onset Parkinsonism. Front. Aging Neurosci. 2017;9:229. doi: 10.3389/fnagi.2017.00229. PubMed DOI PMC
Chung S.J., Armasu S.M., Biernacka J.M., Lesnick T.G., Rider D.N., Cunningham J.M., Maraganore D.M. Variants in estrogen-related genes and risk of Parkinson’s disease. Mov. Disord. 2011;26:1234–1242. doi: 10.1002/mds.23604. PubMed DOI PMC
Yuan L., Song Z., Deng X., Zheng W., Guo Y., Yang Z., Deng H. Systematic analysis of genetic variants in Han Chinese patients with sporadic Parkinson’s disease. Sci. Rep. 2016;6:33850. doi: 10.1038/srep33850. PubMed DOI PMC
Germer E.L., Imhoff S., Vilariño-Güell C., Kasten M., Seibler P., Brüggemann N., Klein C., Trinh J. The Role of Rare Coding Variants in Parkinson’s Disease GWAS Loci. Front. Neurol. 2019;10:1284. doi: 10.3389/fneur.2019.01284. PubMed DOI PMC
McGlinchey R.P., Lee J.C. Cysteine cathepsins are essential in lysosomal degradation of α-synuclein. Proc. Natl. Acad. Sci. USA. 2015;112:9322–9327. doi: 10.1073/pnas.1500937112. PubMed DOI PMC
Klein C.L., Rovelli G., Springer W., Schall C., Gasser T., Kahle P.J. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. J. Neurochem. 2009;111:703–715. doi: 10.1111/j.1471-4159.2009.06358.x. PubMed DOI
Lee S.H., Lee S., Du J., Jain K., Ding M., Kadado A.J., Atteya G., Jaji Z., Tyagi T., Kim W.H., et al. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol. Med. 2019;11:e10409. doi: 10.15252/emmm.201910409. PubMed DOI PMC
Pérez-Santamarina E., García-Ruiz P., Martínez-Rubio D., Ezquerra M., Pla-Navarro I., Puente J., Martí M.J., Palau F., Hoenicka J. Regulatory rare variants of the dopaminergic gene ANKK1 as potential risk factors for Parkinson’s disease. Sci. Rep. 2021;11:9879. doi: 10.1038/s41598-021-89300-6. PubMed DOI PMC
Kedashiro S., Pastuhov S.I., Nishioka T., Watanabe T., Kaibuchi K., Matsumoto K., Hanafusa H. LRRK1-phosphorylated CLIP-170 regulates EGFR trafficking by recruiting p150Glued to microtubule plus ends. J. Cell. Sci. 2015;128:385–396. doi: 10.1242/jcs.169102. PubMed DOI
Greenbaum L., Rigbi A., Lipshtat N., Cilia R., Tesei S., Asselta R., Djaldetti R., Goldwurm S., Lerer B. Association of nicotine dependence susceptibility gene, CHRNA5, with Parkinson’s disease age at onset: Gene and smoking status interaction. Parkinsonism Relat. Disord. 2013;19:72–76. doi: 10.1016/j.parkreldis.2012.07.007. PubMed DOI
Dong W., Qiu C., Gong D., Jiang X., Liu W., Liu W., Zhang L., Zhang W. Proteomics and bioinformatics approaches for the identification of plasma biomarkers to detect Parkinson’s disease. Exp. Med. 2019;18:2833–2842. doi: 10.3892/etm.2019.7888. PubMed DOI PMC
Jansen I.E., Ye H., Heetveld S., Lechler M.C., Michels H., Seinstra R.I., Lubbe S.J., Drouet V., Lesage S., Majounie E., et al. Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biol. 2017;18:22. doi: 10.1186/s13059-017-1147-9. PubMed DOI PMC
Farrow S.L., Schierding W., Gokuladhas S., Golovina E., Fadason T., Cooper A.A., O’Sullivan J.M. Establishing gene regulatory networks from Parkinson’s disease risk loci. Brain. 2022:awac022. doi: 10.1093/brain/awac022. PubMed DOI PMC
Blauwendraat C., Reed X., Krohn L., Heilbron K., Bandres-Ciga S., Tan M., Gibbs J.R., Hernandez D.G., Kumaran R., Langston R. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain. 2020;143:234–248. doi: 10.1093/brain/awz350. PubMed DOI PMC
McGlinchey R.P., Lacy S.M., Huffer K.E., Tayebi N., Sidransky E., Lee J.C. C-terminal α-synuclein truncations are linked to cysteine cathepsin activity in Parkinson’s disease. J. Biol. Chem. 2019;294:9973–9984. doi: 10.1074/jbc.RA119.008930. PubMed DOI PMC
Ritonja A., Popovic T., Turk V., Wiedenmann K., Machleidt W. Amino acid sequence of human liver cathepsin B. FEBS Lett. 1985;181:169–172. doi: 10.1016/0014-5793(85)81136-4. PubMed DOI
Perera R.M., Zoncu R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 2016;32:223–253. doi: 10.1146/annurev-cellbio-111315-125125. PubMed DOI PMC
Vasiljeva O., Reinheckel T., Peters C., Turk D., Turk V., Turk B. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 2007;13:387–403. doi: 10.2174/138161207780162962. PubMed DOI
Cao M., Luo X., Wu K., He X. Targeting lysosomes in human disease: From basic research to clinical applications. Signal Transduct. Target. Ther. 2021;6:1–28. doi: 10.1038/s41392-021-00778-y. PubMed DOI PMC
Cermak S., Kosicek M., Mladenovic-Djordjevic A., Smiljanic K., Kanazir S., Hecimovic S. Loss of cathepsin B and L leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer’s proteins. PLoS ONE. 2016;11:e0167428. doi: 10.1371/journal.pone.0167428. PubMed DOI PMC
Jiang M., Meng J., Zeng F., Qing H., Hook G., Hook V., Wu Z., Ni J. Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. J. Neurochem. 2020;155:300–312. doi: 10.1111/jnc.15032. PubMed DOI PMC
Man S.M., Kanneganti T.-D. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy. 2016;12:2504–2505. doi: 10.1080/15548627.2016.1239679. PubMed DOI PMC
Milanowski Ł., Hoffman-Zacharska D., Geremek M., Friedman A., Figura M., Koziorowski D. The matter of significance–Has the p.(Glu121Lys) variant of TOR1A gene a pathogenic role in dystonia or Parkinson disease? J. Clin. Neurosci. 2020;72:501–503. doi: 10.1016/j.jocn.2019.12.018. PubMed DOI
Konno T., Deutschländer A., Heckman M.G., Ossi M., Vargas E.R., Strongosky A.J., van Gerpen J.A., Uitti R.J., Ross O.A., Wszolek Z.K. Comparison of clinical features among Parkinson’s disease subtypes: A large retrospective study in a single center. J. Neurol. Sci. 2018;386:39–45. doi: 10.1016/j.jns.2018.01.013. PubMed DOI
Notredame C., Higgins D.G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Armougom F., Moretti S., Poirot O., Audic S., Dumas P., Schaeli B., Keduas V., Notredame C. Expresso: Automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 2006;34:W604–W608. doi: 10.1093/nar/gkl092. PubMed DOI PMC
Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324. doi: 10.1093/nar/gku316. PubMed DOI PMC
Wei B., Gunzner-Toste J., Yao H., Wang T., Wang J., Xu Z., Chen J., Wai J., Nonomiya J., Tsai S.P., et al. Discovery of Peptidomimetic Antibody-Drug Conjugate Linkers with Enhanced Protease Specificity. J. Med. Chem. 2018;61:989–1000. doi: 10.1021/acs.jmedchem.7b01430. PubMed DOI
McNicholas S., Potterton E., Wilson K.S., Noble M.E. Presenting your structures: The CCP4mg molecular-graphics software. Acta Cryst. D Biol. Cryst. 2011;67:386–394. doi: 10.1107/S0907444911007281. PubMed DOI PMC
Puschmann A., Fiesel F.C., Caulfield T.R., Hudec R., Ando M., Truban D., Hou X., Ogaki K., Heckman M.G., James E.D., et al. Heterozygous PINK1 p.G411S increases risk of Parkinson’s disease via a dominant-negative mechanism. Brain. 2016;140:98–117. doi: 10.1093/brain/aww261. PubMed DOI PMC
Ando M., Fiesel F.C., Hudec R., Caulfield T.R., Ogaki K., Górka-Skoczylas P., Koziorowski D., Friedman A., Chen L., Dawson V.L., et al. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol. Neurodegener. 2017;12:32. doi: 10.1186/s13024-017-0174-z. PubMed DOI PMC
Watzlawik J.O., Hou X., Fricova D., Ramnarine C., Barodia S.K., Gendron T.F., Heckman M.G., DeTure M., Siuda J., Wszolek Z.K., et al. Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy. 2021;17:2613–2628. doi: 10.1080/15548627.2020.1834712. PubMed DOI PMC