Cathepsin B p.Gly284Val Variant in Parkinson's Disease Pathogenesis

. 2022 Jun 25 ; 23 (13) : . [epub] 20220625

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35806091

Grantová podpora
U19 AG063911 NIA NIH HHS - United States
1U19AG063911 NIH HHS - United States
R01 NS085070 NINDS NIH HHS - United States
R56 AG062556 NIA NIH HHS - United States
R01 NS110085 NINDS NIH HHS - United States
U54 NS110435 NINDS NIH HHS - United States
RF1 NS085070 NINDS NIH HHS - United States

Parkinson's disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk.

Applied Neuroscience Research Group Central European Institute of Technology CEITEC MU Masaryk University 601 77 Brno Czech Republic

Bielanski Hospital 01 809 Warsaw Poland

Clinical Department of Neurology Extrapyramidal Disorders and Alzheimer's Outpatient Clinic Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw 02 507 Warsaw Poland

Department of Clinical Genomics Mayo Clinic Florida Jacksonville FL 32224 USA

Department of Medical Genetics Institute of Mother and Child 01 211 Warsaw Poland

Department of Neurology and Restorative Medicine Health Institute dr Boczarska Jedynak 32 600 Oswiecim Poland

Department of Neurology Faculty of Health Science Medical University of Warsaw 02 091 Warsaw Poland

Department of Neurology Faculty of Medical Sciences in Katowice Medical University of Silesia 40 055 Katowice Poland

Department of Neurology Jagiellonian University Medical College 31 008 Krakow Poland

Department of Neurology Mayo Clinic Florida Jacksonville FL 32224 USA

Department of Neurology St Adalbert Hospital Copernicus PL Ltd 80 462 Gdansk Poland

Department of Neuroscience Mayo Clinic Florida Jacksonville FL 32224 USA

Division of Neurological and Psychiatric Nursing Faculty of Health Sciences Medical University of Gdansk 80 210 Gdansk Poland

Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital Toronto ON M5T 2S8 Canada

Faculty of Medicine and Health Sciences Andrzej Frycz Modrzewski Krakow University 30 705 Cracow Poland

Institute of Genetics and Biotechnology Faculty of Biology University of Warsaw 00 927 Warsaw Poland

Lviv Regional Clinical Hospital 79010 Lviv Ukraine

Neuroscience PhD Program Mayo Graduate School Mayo Clinic Florida Jacksonville FL 32224 USA

School of Medicine and Medical Science University College Dublin D04 V1W8 Dublin Ireland

St Anne's University Hospital and Faculty of Medicine Masaryk University 601 77 Brno Czech Republic

The Dublin Neurological Institute Mater Misericordiae University Hospital D07 W7XF Dublin Ireland

Uzhhorod National University 88 000 Uzhhorod Ukraine

Uzhhorod Regional Clinical Centre of Neurosurgery and Neurology 88018 Uzhhorod Ukraine

Zobrazit více v PubMed

Balestrino R., Schapira A. Parkinson disease. Eur. J. Neurol. 2020;27:27–42. doi: 10.1111/ene.14108. PubMed DOI

Postuma R.B., Berg D., Stern M., Poewe W., Olanow C.W., Oertel W., Obeso J., Marek K., Litvan I., Lang A.E. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015;30:1591–1601. doi: 10.1002/mds.26424. PubMed DOI

Dickson D.W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 2018;46:S30–S33. doi: 10.1016/j.parkreldis.2017.07.033. PubMed DOI PMC

Karimi-Moghadam A., Charsouei S., Bell B., Jabalameli M.R. Parkinson disease from mendelian forms to genetic susceptibility: New molecular insights into the neurodegeneration process. Cell. Mol. Neurobiol. 2018;38:1153–1178. doi: 10.1007/s10571-018-0587-4. PubMed DOI PMC

Nalls M.A., Blauwendraat C., Vallerga C.L., Heilbron K., Bandres-Ciga S., Chang D., Tan M., Kia D.A., Noyce A.J., Xue A. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18:1091–1102. doi: 10.1016/S1474-4422(19)30320-5. PubMed DOI PMC

Milanowski Ł.M., Ross O.A., Friedman A., Hoffman-Zacharska D., Gorka-Skoczylas P., Jurek M., Koziorowski D., Wszolek Z.K. Genetics of Parkinson’s disease in the Polish population. Neurol. Neurochir. Pol. 2021;55:241–252. doi: 10.5603/PJNNS.a2021.0013. PubMed DOI

Siuda J., Boczarska-Jedynak M., Budrewicz S., Figura M., Fiszer U., Gajos A., Gorzkowska A., Koziorowska-Gawron E., Koziorowski D., Krygowska-Wajs A., et al. Validation of the Polish version of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Neurol. I Neurochir. Pol. 2020;54:416–425. doi: 10.5603/PJNNS.a2020.0049. PubMed DOI

Wissemann W.T., Hill-Burns E.M., Zabetian C.P., Factor S.A., Patsopoulos N., Hoglund B., Holcomb C., Donahue R.J., Thomson G., Erlich H., et al. Association of Parkinson disease with structural and regulatory variants in the HLA region. Am. J. Hum. Genet. 2013;93:984–993. doi: 10.1016/j.ajhg.2013.10.009. PubMed DOI PMC

Porrini V., Mota M., Parrella E., Bellucci A., Benarese M., Faggi L., Tonin P., Spano P.F., Pizzi M. Mild Inflammatory Profile without Gliosis in the c-Rel Deficient Mouse Modeling a Late-Onset Parkinsonism. Front. Aging Neurosci. 2017;9:229. doi: 10.3389/fnagi.2017.00229. PubMed DOI PMC

Chung S.J., Armasu S.M., Biernacka J.M., Lesnick T.G., Rider D.N., Cunningham J.M., Maraganore D.M. Variants in estrogen-related genes and risk of Parkinson’s disease. Mov. Disord. 2011;26:1234–1242. doi: 10.1002/mds.23604. PubMed DOI PMC

Yuan L., Song Z., Deng X., Zheng W., Guo Y., Yang Z., Deng H. Systematic analysis of genetic variants in Han Chinese patients with sporadic Parkinson’s disease. Sci. Rep. 2016;6:33850. doi: 10.1038/srep33850. PubMed DOI PMC

Germer E.L., Imhoff S., Vilariño-Güell C., Kasten M., Seibler P., Brüggemann N., Klein C., Trinh J. The Role of Rare Coding Variants in Parkinson’s Disease GWAS Loci. Front. Neurol. 2019;10:1284. doi: 10.3389/fneur.2019.01284. PubMed DOI PMC

McGlinchey R.P., Lee J.C. Cysteine cathepsins are essential in lysosomal degradation of α-synuclein. Proc. Natl. Acad. Sci. USA. 2015;112:9322–9327. doi: 10.1073/pnas.1500937112. PubMed DOI PMC

Klein C.L., Rovelli G., Springer W., Schall C., Gasser T., Kahle P.J. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. J. Neurochem. 2009;111:703–715. doi: 10.1111/j.1471-4159.2009.06358.x. PubMed DOI

Lee S.H., Lee S., Du J., Jain K., Ding M., Kadado A.J., Atteya G., Jaji Z., Tyagi T., Kim W.H., et al. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol. Med. 2019;11:e10409. doi: 10.15252/emmm.201910409. PubMed DOI PMC

Pérez-Santamarina E., García-Ruiz P., Martínez-Rubio D., Ezquerra M., Pla-Navarro I., Puente J., Martí M.J., Palau F., Hoenicka J. Regulatory rare variants of the dopaminergic gene ANKK1 as potential risk factors for Parkinson’s disease. Sci. Rep. 2021;11:9879. doi: 10.1038/s41598-021-89300-6. PubMed DOI PMC

Kedashiro S., Pastuhov S.I., Nishioka T., Watanabe T., Kaibuchi K., Matsumoto K., Hanafusa H. LRRK1-phosphorylated CLIP-170 regulates EGFR trafficking by recruiting p150Glued to microtubule plus ends. J. Cell. Sci. 2015;128:385–396. doi: 10.1242/jcs.169102. PubMed DOI

Greenbaum L., Rigbi A., Lipshtat N., Cilia R., Tesei S., Asselta R., Djaldetti R., Goldwurm S., Lerer B. Association of nicotine dependence susceptibility gene, CHRNA5, with Parkinson’s disease age at onset: Gene and smoking status interaction. Parkinsonism Relat. Disord. 2013;19:72–76. doi: 10.1016/j.parkreldis.2012.07.007. PubMed DOI

Dong W., Qiu C., Gong D., Jiang X., Liu W., Liu W., Zhang L., Zhang W. Proteomics and bioinformatics approaches for the identification of plasma biomarkers to detect Parkinson’s disease. Exp. Med. 2019;18:2833–2842. doi: 10.3892/etm.2019.7888. PubMed DOI PMC

Jansen I.E., Ye H., Heetveld S., Lechler M.C., Michels H., Seinstra R.I., Lubbe S.J., Drouet V., Lesage S., Majounie E., et al. Discovery and functional prioritization of Parkinson’s disease candidate genes from large-scale whole exome sequencing. Genome Biol. 2017;18:22. doi: 10.1186/s13059-017-1147-9. PubMed DOI PMC

Farrow S.L., Schierding W., Gokuladhas S., Golovina E., Fadason T., Cooper A.A., O’Sullivan J.M. Establishing gene regulatory networks from Parkinson’s disease risk loci. Brain. 2022:awac022. doi: 10.1093/brain/awac022. PubMed DOI PMC

Blauwendraat C., Reed X., Krohn L., Heilbron K., Bandres-Ciga S., Tan M., Gibbs J.R., Hernandez D.G., Kumaran R., Langston R. Genetic modifiers of risk and age at onset in GBA associated Parkinson’s disease and Lewy body dementia. Brain. 2020;143:234–248. doi: 10.1093/brain/awz350. PubMed DOI PMC

McGlinchey R.P., Lacy S.M., Huffer K.E., Tayebi N., Sidransky E., Lee J.C. C-terminal α-synuclein truncations are linked to cysteine cathepsin activity in Parkinson’s disease. J. Biol. Chem. 2019;294:9973–9984. doi: 10.1074/jbc.RA119.008930. PubMed DOI PMC

Ritonja A., Popovic T., Turk V., Wiedenmann K., Machleidt W. Amino acid sequence of human liver cathepsin B. FEBS Lett. 1985;181:169–172. doi: 10.1016/0014-5793(85)81136-4. PubMed DOI

Perera R.M., Zoncu R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 2016;32:223–253. doi: 10.1146/annurev-cellbio-111315-125125. PubMed DOI PMC

Vasiljeva O., Reinheckel T., Peters C., Turk D., Turk V., Turk B. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 2007;13:387–403. doi: 10.2174/138161207780162962. PubMed DOI

Cao M., Luo X., Wu K., He X. Targeting lysosomes in human disease: From basic research to clinical applications. Signal Transduct. Target. Ther. 2021;6:1–28. doi: 10.1038/s41392-021-00778-y. PubMed DOI PMC

Cermak S., Kosicek M., Mladenovic-Djordjevic A., Smiljanic K., Kanazir S., Hecimovic S. Loss of cathepsin B and L leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer’s proteins. PLoS ONE. 2016;11:e0167428. doi: 10.1371/journal.pone.0167428. PubMed DOI PMC

Jiang M., Meng J., Zeng F., Qing H., Hook G., Hook V., Wu Z., Ni J. Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. J. Neurochem. 2020;155:300–312. doi: 10.1111/jnc.15032. PubMed DOI PMC

Man S.M., Kanneganti T.-D. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy. 2016;12:2504–2505. doi: 10.1080/15548627.2016.1239679. PubMed DOI PMC

Milanowski Ł., Hoffman-Zacharska D., Geremek M., Friedman A., Figura M., Koziorowski D. The matter of significance–Has the p.(Glu121Lys) variant of TOR1A gene a pathogenic role in dystonia or Parkinson disease? J. Clin. Neurosci. 2020;72:501–503. doi: 10.1016/j.jocn.2019.12.018. PubMed DOI

Konno T., Deutschländer A., Heckman M.G., Ossi M., Vargas E.R., Strongosky A.J., van Gerpen J.A., Uitti R.J., Ross O.A., Wszolek Z.K. Comparison of clinical features among Parkinson’s disease subtypes: A large retrospective study in a single center. J. Neurol. Sci. 2018;386:39–45. doi: 10.1016/j.jns.2018.01.013. PubMed DOI

Notredame C., Higgins D.G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI

Armougom F., Moretti S., Poirot O., Audic S., Dumas P., Schaeli B., Keduas V., Notredame C. Expresso: Automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 2006;34:W604–W608. doi: 10.1093/nar/gkl092. PubMed DOI PMC

Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324. doi: 10.1093/nar/gku316. PubMed DOI PMC

Wei B., Gunzner-Toste J., Yao H., Wang T., Wang J., Xu Z., Chen J., Wai J., Nonomiya J., Tsai S.P., et al. Discovery of Peptidomimetic Antibody-Drug Conjugate Linkers with Enhanced Protease Specificity. J. Med. Chem. 2018;61:989–1000. doi: 10.1021/acs.jmedchem.7b01430. PubMed DOI

McNicholas S., Potterton E., Wilson K.S., Noble M.E. Presenting your structures: The CCP4mg molecular-graphics software. Acta Cryst. D Biol. Cryst. 2011;67:386–394. doi: 10.1107/S0907444911007281. PubMed DOI PMC

Puschmann A., Fiesel F.C., Caulfield T.R., Hudec R., Ando M., Truban D., Hou X., Ogaki K., Heckman M.G., James E.D., et al. Heterozygous PINK1 p.G411S increases risk of Parkinson’s disease via a dominant-negative mechanism. Brain. 2016;140:98–117. doi: 10.1093/brain/aww261. PubMed DOI PMC

Ando M., Fiesel F.C., Hudec R., Caulfield T.R., Ogaki K., Górka-Skoczylas P., Koziorowski D., Friedman A., Chen L., Dawson V.L., et al. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol. Neurodegener. 2017;12:32. doi: 10.1186/s13024-017-0174-z. PubMed DOI PMC

Watzlawik J.O., Hou X., Fricova D., Ramnarine C., Barodia S.K., Gendron T.F., Heckman M.G., DeTure M., Siuda J., Wszolek Z.K., et al. Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human cells, autopsy brain, and blood samples. Autophagy. 2021;17:2613–2628. doi: 10.1080/15548627.2020.1834712. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...