• This record comes from PubMed

Screening an In-House Isoquinoline Alkaloids Library for New Blockers of Voltage-Gated Na+ Channels Using Voltage Sensor Fluorescent Probes: Hits and Biases

. 2022 Jun 28 ; 27 (13) : . [epub] 20220628

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 35807390
PubMed Central PMC9268414
DOI 10.3390/molecules27134133
PII: molecules27134133
Knihovny.cz E-resources

Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.

See more in PubMed

Hille B. 3rd ed. Sinauer; Sunderland, MA, USA: 2001. Ion Channels of Excitable Membranes.

Catterall W.A., Goldin A.L., Waxman S.G. International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacol. Rev. 2005;57:397–409. doi: 10.1124/pr.57.4.4. PubMed DOI

Eijkelkamp N., Linley J.E., Baker M.D., Minett M.S., Cregg R., Werdehausen R., Rugiero F., Wood J.N. Neurological Perspectives on Voltage-Gated Sodium Channels. Brain. 2012;135:2585–2612. doi: 10.1093/brain/aws225. PubMed DOI PMC

De Lera Ruiz M., Kraus R.L. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J. Med. Chem. 2015;58:7093–7118. doi: 10.1021/jm501981g. PubMed DOI

Azimova S.S., Yunusov M.S., editors. Natural Compounds: Plant Sources, Structure and Properties. Springer; New York, NY, USA: 2013. Springer reference.

Amirkia V., Heinrich M. Alkaloids as Drug Leads – A Predictive Structural and Biodiversity-Based Analysis. Phytochem. Lett. 2014;10:xlviii–liii. doi: 10.1016/j.phytol.2014.06.015. DOI

Wink M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines. 2015;2:251–286. doi: 10.3390/medicines2030251. PubMed DOI PMC

Wang S.Y., Wang G.K. Voltage-Gated Sodium Channels as Primary Targets of Diverse Lipid-Soluble Neurotoxins. Cell. Signal. 2003;15:151–159. doi: 10.1016/S0898-6568(02)00085-2. PubMed DOI

Kontis K.J., Goldin A.L. Site-Directed Mutagenesis of the Putative Pore Region of the Rat IIA Sodium Channel. Mol. Pharmacol. 1993;43:635–644. PubMed

Terlau H., Heinemann S.H., Stuhmer W., Pusch M., Conti F., Imoto K., Numa S. Mapping the Site of Block by Tetrodotoxin and Saxitoxin of Sodium Channel II. FEBS Lett. 1991;293:93–96. doi: 10.1016/0014-5793(91)81159-6. PubMed DOI

Durán-Riveroll L., Cembella A. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels. Mar. Drugs. 2017;15:303. doi: 10.3390/md15100303. PubMed DOI PMC

Tsukamoto T., Chiba Y., Wakamori M., Yamada T., Tsunogae S., Cho Y., Sakakibara R., Imazu T., Tokoro S., Satake Y., et al. Differential Binding of Tetrodotoxin and Its Derivatives to Voltage-sensitive Sodium Channel Subtypes (Nav 1.1 to Nav 1.7) J. Cereb. Blood Flow Metab. 2017;174:3881–3892. doi: 10.1111/bph.13985. PubMed DOI PMC

Catterall W.A. Activation of the Action Potential Na+ Ionophore by Neurotoxins. An Allosteric Model. J. Biol. Chem. 1977;252:8669–8676. doi: 10.1016/S0021-9258(19)75273-9. PubMed DOI

Tamkun M.M., Catterall W.A. Ion Flux Studies of Voltage-Sensitive Sodium Channels in Synaptic Nerve-Ending Particles. Mol. Pharmacol. 1981;19:78–86. PubMed

Ameri A., Simmet T. Antagonism of the Aconitine-Induced Inexcitability by the Structurally Related Aconitum Alkaloids, Lappaconitine and Ajacine. Brain Res. 1999;842:332–341. doi: 10.1016/S0006-8993(99)01838-7. PubMed DOI

Li Y., Zheng Y., Yu Y., Gan Y., Gao Z. Inhibitory Effects of Lappaconitine on the Neuronal Isoforms of Voltage-Gated Sodium Channels. Acta Pharmacol. Sin. 2019;40:451–459. doi: 10.1038/s41401-018-0067-x. PubMed DOI PMC

Sun M.-L., Ao J.-P., Wang Y.-R., Huang Q., Li T.-F., Li X.-Y., Wang Y.-X. Lappaconitine, a C18-Diterpenoid Alkaloid, Exhibits Antihypersensitivity in Chronic Pain through Stimulation of Spinal Dynorphin A Expression. Psychopharmacology. 2018;235:2559–2571. doi: 10.1007/s00213-018-4948-y. PubMed DOI

Fischer F., Vonderlin N., Zitron E., Seyler C., Scherer D., Becker R., Katus H.A., Scholz E.P. Inhibition of Cardiac Kv1.5 and Kv4.3 Potassium Channels by the Class Ia Anti-Arrhythmic Ajmaline: Mode of Action. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 2013;386:991–999. doi: 10.1007/s00210-013-0901-0. PubMed DOI

Friedrich O., V Wegner F., Wink M., Fink R.H.A. Na+ and K+ -Channels as Molecular Targets of the Alkaloid Ajmaline in Skeletal Muscle Fibres: Ajmaline Action on Skeletal Muscle Cation Channels. J. Cereb. Blood Flow Metab. 2007;151:63–74. doi: 10.1038/sj.bjp.0707194. PubMed DOI

Kiesecker C., Zitron E., Luck S., Bloehs R., Scholz E.P., Kathofer S., Thomas D., Kreye V.A.W., Katus H.A., Schoels W., et al. Class Ia Anti-Arrhythmic Drug Ajmaline Blocks HERG Potassium Channels: Mode of Action. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 2004;370:423–435. doi: 10.1007/s00210-004-0976-8. PubMed DOI

Miller D.C., Harmer S.C., Poliandri A., Nobles M., Edwards E.C., Ware J.S., Sharp T.V., McKay T.R., Dunkel L., Lambiase P.D., et al. Ajmaline Blocks I Na and I Kr without Eliciting Differences between Brugada Syndrome Patient and Control Human Pluripotent Stem Cell-Derived Cardiac Clusters. Stem Cell Res. 2017;25:233–244. doi: 10.1016/j.scr.2017.11.003. PubMed DOI PMC

Rolf S., Bruns H., Wichter T., Kirchhof P., Ribbing M., Wasmer K., Paul M., Breithardt G., Haverkamp W., Eckardt L. The Ajmaline Challenge in Brugada Syndrome: Diagnostic Impact, Safety, and Recommended Protocol. Eur. Hear. J. 2003;24:1104–1112. doi: 10.1016/S0195-668X(03)00195-7. PubMed DOI

Yu G., Qian L., Yu J., Tang M., Wang C., Zhou Y., Geng X., Zhu C., Yang Y., Pan Y., et al. Brucine Alleviates Neuropathic Pain in Mice via Reducing the Current of the Sodium Channel. J. Ethnopharmacol. 2019;233:56–63. doi: 10.1016/j.jep.2018.12.045. PubMed DOI

Splettstoesser F., Bonnet U., Wiemann M., Bingmann D., Büsselberg D. Modulation of Voltage-Gated Channel Currents by Harmaline and Harmane: Harmala Alkaloids Modulate Voltage-Gated Currents. J. Cereb. Blood Flow Metab. 2005;144:52–58. doi: 10.1038/sj.bjp.0706024. PubMed DOI PMC

Zhao F., Tang Q., Xu J., Wang S., Li S., Zou X., Cao Z. Dehydrocrenatidine Inhibits Voltage-Gated Sodium Channels and Ameliorates Mechanic Allodia in a Rat Model of Neuropathic Pain. Toxins. 2019;11:229. doi: 10.3390/toxins11040229. PubMed DOI PMC

Bentley K.W. β-Phenylethylamines and the Isoquinoline Alkaloids. Nat. Prod. Rep. 2006;23:444–463. doi: 10.1039/B509523A. PubMed DOI

Chang G.-J., Wu M.-H., Wu Y.-C., Su M.-J. Electrophysiological Mechanisms for Antiarrhythmic Efficacy and Positive Inotropy of Liriodenine, a Natural Aporphine Alkaloid from Fissistigma Glaucescens. J. Cereb. Blood Flow Metab. 1996;118:1571–1583. doi: 10.1111/j.1476-5381.1996.tb15577.x. PubMed DOI PMC

Xiao-Shan H., Qing L., Yun-Shu M., Ze-Pu Y. Crebanine Inhibits Voltage-Dependent Na+ Current in Guinea-Pig Ventricular Myocytes. Chin. J. Nat. Med. 2014;12:20–23. doi: 10.1016/S1875-5364(14)60004-2. PubMed DOI

Wang J., Ma Y., Sachs F., Li J., Suchyna T.M. GsMTx4-D Is a Cardioprotectant against Myocardial Infarction during Ischemia and Reperfusion. J. Mol. Cell. Cardiol. 2016;98:83–94. doi: 10.1016/j.yjmcc.2016.07.005. PubMed DOI PMC

Araújo D.A.M., Mafra R.A., Rodrigues A.L.P., Miguel-Silva V., Beirão P.S.L., De Almeida R.N., Quintans L., Souza M.F.V.de, Cruz J.S. N-Salicyloyltryptamine, a New Anticonvulsant Drug, Acts on Voltage-Dependent Na+, Ca2+, and K+ Ion Channels: N-Salicyloyltryptamine Acts on Voltage-Dependent Ion Channels. J. Cereb. Blood Flow Metab. 2003;140:1331–1339. doi: 10.1038/sj.bjp.0705471. PubMed DOI PMC

Baroni D., Picco C., Barbieri R., Moran O. Antisense-Mediated Post-Transcriptional Silencing of SCN1B Gene Modulates Sodium Channel Functional Expression: Silencing of SCN1B Gene Modulates the Sodium Channel Expression. Biol. Cell. 2014;106:13–29. doi: 10.1111/boc.201300040. PubMed DOI

Campos F.V., Coronas F.I.V., Beirão P.S.L. Voltage-Dependent Displacement of the Scorpion Toxin Ts3 from Sodium Channels and Its Implication on the Control of Inactivation: Scorpion Toxin and Sodium Channel Inactivation. J. Cereb. Blood Flow Metab. 2004;142:1115–1122. doi: 10.1038/sj.bjp.0705793. PubMed DOI PMC

So E.C., Wu S.-N., Lo Y.-C., Su K. Differential Regulation of Tefluthrin and Telmisartan on the Gating Charges of I Na Activation and Inactivation as Well as on Resurgent and Persistent I Na in a Pituitary Cell Line (GH3) Toxicol. Lett. 2018;285:104–112. doi: 10.1016/j.toxlet.2018.01.002. PubMed DOI

Wu S.-N., Wu Y.-H., Chen B.-S., Lo Y.-C., Liu Y.-C. Underlying Mechanism of Actions of Tefluthrin, a Pyrethroid Insecticide, on Voltage-Gated Ion Currents and on Action Currents in Pituitary Tumor (GH3) Cells and GnRH-Secreting (GT1-7) Neurons. Toxicology. 2009;258:70–77. doi: 10.1016/j.tox.2009.01.009. PubMed DOI

Réthoré L., Park J., Montnach J., Nicolas S., Khoury J., Le Seac’h E., Mabrouk K., De Pomyers H., Tricoire-Leignel H., Mattei C., et al. Pharmacological Dissection of the Crosstalk between NaV and CaV Channels in GH3b6 Cells. Int. J. Mol. Sci. 2022;23:827. doi: 10.3390/ijms23020827. PubMed DOI PMC

Baroni D., Moran O. Molecular Differential Expression of Voltage-Gated Sodium Channel Alpha and Beta Subunit MRNAs in Five Different Mammalian Cell Lines. J. Bioenerg. Biomembr. 2011;43:729–738. doi: 10.1007/s10863-011-9399-7. PubMed DOI

Vega A.V., Espinosa J.L., Lopez-Dominguez A.M., Lopez-Santiago L.F., Navarrete A., Cota G. L-Type Calcium Channel Activation up-Regulates the MRNAs for Two Different Sodium Channel Alpha Subunits (Nav1.2 and Nav1.3) in Rat Pituitary GH3 Cells. Mol. Brain Res. 2003;116:115–125. doi: 10.1016/S0169-328X(03)00279-1. PubMed DOI

Iamshanova O., Mariot P., Lehen’kyi V., Prevarskaya N. Comparison of Fluorescence Probes for Intracellular Sodium Imaging in Prostate Cancer Cell Lines. Eur. Biophys. J. 2016;45:765–777. doi: 10.1007/s00249-016-1173-7. PubMed DOI PMC

Stojilkovic S.S., Tabak J., Bertram R. Ion Channels and Signaling in the Pituitary Gland. Endocr. Rev. 2010;31:845–915. doi: 10.1210/er.2010-0005. PubMed DOI PMC

Yang L., Li Q., Liu X., Liu S. Roles of Voltage-Gated Tetrodotoxin-Sensitive Sodium Channels NaV1.3 and NaV1.7 in Diabetes and Painful Diabetic Neuropathy. Int. J. Mol. Sci. 2016;17:1479. doi: 10.3390/ijms17091479. PubMed DOI PMC

Zhao F., Li X., Jin L., Zhang F., Inoue M., Yu B., Cao Z. Development of a Rapid Throughput Assay for Identification of HNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin. Mar. Drugs. 2016;14:36. doi: 10.3390/md14020036. PubMed DOI PMC

Gonzalez J.E., Tsien R.Y. Improved Indicators of Cell Membrane Potential That Use Fluorescence Resonance Energy Transfer. Chem. Biol. 1997;4:269–277. doi: 10.1016/S1074-5521(97)90070-3. PubMed DOI

Liu C.J., Priest B.T., Bugianesi R.M., Dulski P.M., Felix J.P., Dick I.E., Brochu R.M., Knaus H.G., Middleton R.E., Kaczorowski G.J., et al. A High-Capacity Membrane Potential FRET-Based Assay for NaV1.8 Channels. Assay Drug Dev. Technol. 2006;4:37–48. doi: 10.1089/adt.2006.4.37. PubMed DOI

Middleton R.E., Warren V.A., Kraus R.L., Hwang J.C., Liu C.J., Dai G., Brochu R.M., Kohler M.G., Gao Y.D., Garsky V.M., et al. Two Tarantula Peptides Inhibit Activation of Multiple Sodium Channels. Biochemistry. 2002;41:14734–14747. doi: 10.1021/bi026546a. PubMed DOI

Williams B.S., Felix J.P., Priest B.T., Brochu R.M., Dai K., Hoyt S.B., London C., Tang Y.S., Duffy J.L., Parsons W.H., et al. Characterization of a New Class of Potent Inhibitors of the Voltage-Gated Sodium Channel Nav1.7. Biochemistry. 2007;46:14693–14703. doi: 10.1021/bi7018207. PubMed DOI

Deuis J.R., Mueller A., Israel M.R., Vetter I. The Pharmacology of Voltage-Gated Sodium Channel Activators. Neuropharmacology. 2017;127:87–108. doi: 10.1016/j.neuropharm.2017.04.014. PubMed DOI

Chernov-Rogan T., Li T., Lu G., Verschoof H., Khakh K., Jones S.W., Beresini M.H., Liu C., Ortwine D.F., McKerrall S.J., et al. Mechanism-Specific Assay Design Facilitates the Discovery of Nav1.7-Selective Inhibitors. Proc. Natl. Acad. Sci. USA. 2018;115:E792–E801. doi: 10.1073/pnas.1713701115. PubMed DOI PMC

Felix J.P., Williams B.S., Priest B.T., Brochu R.M., Dick I.E., Warren V.A., Yan L., Slaughter R.S., Kaczorowski G.J., Smith M.M., et al. Functional Assay of Voltage-Gated Sodium Channels Using Membrane Potential-Sensitive Dyes. Assay Drug Dev. Technol. 2004;2:260–268. doi: 10.1089/1540658041410696. PubMed DOI

Du Y., Days E., Romaine I., Abney K.K., Kaufmann K., Sulikowski G., Stauffer S., Lindsley C.W., Weaver C.D. Development and Validation of a Thallium Flux-Based Functional Assay for the Sodium Channel NaV1.7 and Its Utility for Lead Discovery and Compound Profiling. ACS Chem. Neurosci. 2015;6:871–878. doi: 10.1021/acschemneuro.5b00004. PubMed DOI

Du Y., Garden D.P., Wang L., Zhorov B.S., Dong K. Identification of New Batrachotoxin-Sensing Residues in Segment IIIS6 of the Sodium Channel. J. Biol. Chem. 2011;286:13151–13160. doi: 10.1074/jbc.M110.208496. PubMed DOI PMC

Chang K.C., Su M.J., Peng Y.I., Shao C.C., Wu Y.C., Tseng Y.Z. Mechanical Effects of Liriodenine on the Left Ventricular-Arterial Coupling in Wistar Rats: Pressure-Stroke Volume Analysis. Br. J. Pharmacol. 2001;133:29–36. doi: 10.1038/sj.bjp.0704036. PubMed DOI PMC

Khamis S., Bibby M.C., Brown J.E., Cooper P.A., Scowen I., Wright C.W. Phytochemistry and Preliminary Biological Evaluation of Cyathostemma Argenteum, a Malaysian Plant Used Traditionally for the Treatment of Breast Cancer. Phytother. Res. 2004;18:507–510. doi: 10.1002/ptr.1318. PubMed DOI

Wang T.S., Luo Y.P., Wang J., He M.X., Zhong M.G., Li Y., Song X.P. (+)-Rumphiin and Polyalthurea, New Compounds from the Stems of Polyalthia Rumphii. Nat. Prod. Commun. 2013;8:1427–1429. doi: 10.1177/1934578X1300801023. PubMed DOI

Chen C. Review on Pharmacological Activities of Liriodenine. Afr. J. Pharm. Pharmacol. 2013;7:1067–1070. doi: 10.5897/AJPP2013.3477. DOI

Coquerel Q.R.R., Demares F., Geldenhuys W.J., Le Ray A.M., Breard D., Richomme P., Legros C., Norris E., Bloomquist J.R. Toxicity and Mode of Action of the Aporphine Plant Alkaloid Liriodenine on the Insect GABA Receptor. Toxicon. 2021;201:141–147. doi: 10.1016/j.toxicon.2021.08.019. PubMed DOI

Lin C.H., Yang C.M., Ko F.N., Wu Y.C., Teng C.M. Antimuscarinic Action of Liriodenine, Isolated from Fissistigma Glaucescens, in Canine Tracheal Smooth Muscle. Br. J. Pharmacol. 1994;113:1464–1470. doi: 10.1111/j.1476-5381.1994.tb17161.x. PubMed DOI PMC

Medeiros M.A.A., Pinho J.F., De-Lira D.P., Barbosa-Filho J.M., Araújo D.A.M., Cortes S.F., Lemos V.S., Cruz J.S. Curine, a Bisbenzylisoquinoline Alkaloid, Blocks L-Type Ca2+ Channels and Decreases Intracellular Ca2+ Transients in A7r5 Cells. Eur. J. Pharmacol. 2011;669:100–107. doi: 10.1016/j.ejphar.2011.07.044. PubMed DOI

Tashjian A.H. Methods in Enzymology. Volume 58. Elsevier; Ansterdam, The Netherlands: 1979. Clonal Strains of Hormone-Producing Pituitary Cells; pp. 527–535. PubMed

Priest B.T., Garcia M.L., Middleton R.E., Brochu R.M., Clark S., Dai G., Dick I.E., Felix J.P., Liu C.J., Reiseter B.S., et al. A Disubstituted Succinamide Is a Potent Sodium Channel Blocker with Efficacy in a Rat Pain Model. Biochemistry. 2004;43:9866–9876. doi: 10.1021/bi0493259. PubMed DOI

Colborn J.M., Kosoy M.Y., Motin V.L., Telepnev M.V., Valbuena G., Myint K.S., Fofanov Y., Putonti C., Feng C., Peruski L. Improved Detection of Bartonella DNA in Mammalian Hosts and Arthropod Vectors by Real-Time PCR Using the NADH Dehydrogenase Gamma Subunit (NuoG) J. Clin. Microbiol. 2010;48:4630–4633. doi: 10.1128/JCM.00470-10. PubMed DOI PMC

Sun J., Sun B., Han F., Yan S., Yang H., Akio K. Rapid HPLC Method for Determination of 12 Isoflavone Components in Soybean Seeds. Agric. Sci. China. 2011;10:70–77. doi: 10.1016/S1671-2927(11)60308-8. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...