Fusion of two unrelated protein domains in a chimera protein and its 3D prediction: Justification of the x-ray reference structures as a prediction benchmark
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35833233
PubMed Central
PMC9796088
DOI
10.1002/prot.26398
Knihovny.cz E-zdroje
- Klíčová slova
- 3D structure prediction, fusion proteins, molecular simulations, x-ray crystallography,
- MeSH
- proteinové domény MeSH
- proteiny * chemie MeSH
- rekombinantní fúzní proteiny * chemie MeSH
- rentgenové záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
- rekombinantní fúzní proteiny * MeSH
Proteins are naturally formed by domains edging their functional and structural properties. A domain out of the context of an entire protein can retain its structure and to some extent also function on its own. These properties rationalize construction of artificial fusion multidomain proteins with unique combination of various functions. Information on the specific functional and structural characteristics of individual domains in the context of new artificial fusion proteins is inevitably encoded in sequential order of composing domains defining their mutual spatial positions. So the challenges in designing new proteins with new domain combinations lie dominantly in structure/function prediction and its context dependency. Despite the enormous body of publications on artificial fusion proteins, the task of their structure/function prediction is complex and nontrivial. The degree of spatial freedom facilitated by a linker between domains and their mutual orientation driven by noncovalent interactions is beyond a simple and straightforward methodology to predict their structure with reasonable accuracy. In the presented manuscript, we tested methodology using available modeling tools and computational methods. We show that the process and methodology of such prediction are not straightforward and must be done with care even when recently introduced AlphaFold II is used. We also addressed a question of benchmarking standards for prediction of multidomain protein structures-x-ray or Nuclear Magnetic Resonance experiments. On the study of six two-domain protein chimeras as well as their composing domains and their x-ray structures selected from PDB, we conclude that the major obstacle for justified prediction is inappropriate sampling of the conformational space by the explored methods. On the other hands, we can still address particular steps of the methodology and improve the process of chimera proteins prediction.
Central European Institute of Technology Masaryk University Brno Czech Republic
Faculty of Natural Sciences Charles University Praha 2 Czech Republic
Zobrazit více v PubMed
Naveenkumar N, Kumar G, Sowdhamini R, Srinivasan N, Vishwanath S. Fold combinations in multi‐domain proteins. Bioinformation. 2019;15:342‐350. doi:10.6026/97320630015342 PubMed DOI PMC
Dawson NL, Lewis TE, Das S, et al. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res. 2017;45:D289‐D295. PubMed PMC
Dunn HA, Ferguson SS. PDZ protein regulation of G protein‐coupled receptor trafficking and signaling pathways. Mol Pharmacol. 2015;88:624‐639. doi:10.1124/mol.115.098509 PubMed DOI
Kummerfeld SK, Teichmann SA. Protein domain organisation: adding order. BMC Bioinformatics. 2009;10:39. doi:10.1186/1471-2105-10-39 PubMed DOI PMC
Yu K, Liu C, Kim BG, Lee DY. Synthetic fusion protein design and applications. Biotechnol Adv. 2015;33:155‐164. doi:10.1016/j.biotechadv.2014.11.005 PubMed DOI
Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J. 2012;7:620‐634. doi:10.1002/biot.201100155 PubMed DOI
Waugh DS. Crystal structures of MBP fusion proteins. Protein Sci. 2016;25:559‐571. doi:10.1002/pro.2863 PubMed DOI PMC
Li S, Chen LX, Peng XH, et al. Overview of the reporter genes and reporter mouse models. Anim Model Exp Med. 2018;1:29‐35. doi:10.1002/ame2.12008 PubMed DOI PMC
Navale GR, Sharma P, Said MS, et al. Enhancing epi‐cedrol production in Escherichia coli by fusion expression of farnesyl pyrophosphate synthase and epi‐cedrol synthase. Eng Life Sci. 2019;19:606‐616. doi:10.1002/elsc.201900103 PubMed DOI PMC
Fan L, Wang Y, Tuyishime P, et al. Engineering artificial fusion proteins for enhanced methanol bioconversion. Chembiochem. 2018;19:2465‐2471. doi:10.1002/cbic.201800424 PubMed DOI
Teillaud JL. Engineering of monoclonal antibodies and antibody‐based fusion proteins: successes and challenges. Expert Opin Biol Ther. 2005;5:S15‐S27. doi:10.1517/14712598.5.1.S15 PubMed DOI
Beck A, Reichert JM. Therapeutic fc‐fusion proteins and peptides as successful alternatives to antibodies. MAbs. 2011;3:415‐416. doi:10.4161/mabs.3.5.17334 PubMed DOI PMC
Hutmacher C, Neri D. Antibody‐cytokine fusion proteins: biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev. 2019;141:67‐91. doi:10.1016/j.addr.2018.09.002 PubMed DOI
Wang LL, Xu JY, Kong Y, et al. Engineering a novel antibody‐peptide bispecific fusion protein against MERS‐CoV. Antibodies. 2019;8. doi:10.3390/antib8040053 PubMed DOI PMC
Caravella JA, Wang DP, Glaser SM, Lugovskoy A. Structure‐guided design of antibodies. Curr Comput Aided Drug des. 2010;6:128‐138. PubMed
Iyengar ARS, Gupta S, Jawalekar S, Pande AH. Protein chimerization: a new frontier for engineering protein therapeutics with improved pharmacokinetics. J Pharmacol Exp Ther. 2019;370:703‐714. doi:10.1124/jpet.119.257063 PubMed DOI
Kintzing JR, Interrante MVF, Cochrane JR. Emerging strategies for developing next‐generation protein therapeutics for cancer treatment. Trends Pharmacol Sci. 2016;37:993‐1008. doi:10.1016/j.tips.2016.10.005 PubMed DOI PMC
Trang VH, Zhang XQ, Yumul RC, et al. A coiled‐coil masking domain for selective activation of therapeutic antibodies. Nat Biotechnol. 2019;37:761. doi:10.1038/s41587-019-0135-x PubMed DOI
Yang Y, Aloysius H, Inoyama D, Chen Y, Hu L. Enzyme‐mediated hydrolytic activation of prodrugs. Acta Pharm Sin B. 2011;1:143‐159. doi:10.1016/j.apsb.2011.08.001 DOI
Xu D, Jaroszewski L, Li Z, Godzik A. AIDA: ab initio domain assembly for automated multi‐domain protein structure prediction and domain‐domain interaction prediction. Bioinformatics. 2015;31:2098‐2105. doi:10.1093/bioinformatics/btv092 PubMed DOI PMC
Zhou XG, Hu J, Zhang CX, Zhang GJ, Zhang Y. Assembling multidomain protein structures through analogous global structural alignments. Proc Natl Acad Sci U S A. 2019;116:15930‐15938. doi:10.1073/pnas.1905068116 PubMed DOI PMC
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583‐589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Res. 2022;50:D439‐D444. doi:10.1093/nar/gkab1061 PubMed DOI PMC
Verma R, Pandit SB. Unraveling the structural landscape of intra‐chain domain interfaces: implication in the evolution of domain‐domain interactions. PLoS One. 2019;14:e0220336. doi:10.1371/journal.pone.0220336 PubMed DOI PMC
Nanev CN. Application of mean‐separation‐works method to protein crystal nucleation. Cryst Res Technol. 2008;43:229‐233. doi:10.1002/crat.200711085 DOI
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774‐797. doi:10.1016/j.jmb.2007.05.022 PubMed DOI
Jimenez‐Garcia B, Elez K, Koukos PI, Bonvin AM, Vangone A. PRODIGY‐crystal: a web‐tool for classification of biological interfaces in protein complexes. Bioinformatics. 2019;35:4821‐4823. doi:10.1093/bioinformatics/btz437 PubMed DOI PMC
Carlon A, Ravera E, Parigi G, Murshudov GN, Luchinat C. Joint X‐ray/NMR structure refinement of multidomain/multisubunit systems. J Biomol NMR. 2019;73:265‐278. doi:10.1007/s10858-018-0212-3 PubMed DOI PMC
Garbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein AV, Galzitskaya OV. Comparison of X‐ray and NMR structures: is there a systematic difference in residue contacts between X‐ray and NMR‐resolved protein structures? Proteins. 2005;60:139‐147. doi:10.1002/prot.20491 PubMed DOI
Schneider M, Fu XR, Keating AE. X‐ray vs. NMR structures as templates for computational protein design. Proteins. 2009;77:97‐110. doi:10.1002/prot.22421 PubMed DOI PMC
Qian B, Raman S, Das R, et al. High‐resolution structure prediction and the crystallographic phase problem. Nature. 2007;450:259‐264. doi:10.1038/nature06249 PubMed DOI PMC
Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng. 2017;2:9‐33. doi:10.1039/C6ME00083E PubMed DOI PMC
Zhang JH, Yun J, Shang ZG, Zhang XH, Pan BR. Design and optimization of a linker for fusion protein construction. Prog Nat Sci Int. 2009;19:1197‐1200. doi:10.1016/j.pnsc.2008.12.007 DOI
Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65:1357‐1369. doi:10.1016/j.addr.2012.09.039 PubMed DOI PMC
Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235‐242. PubMed PMC
Madeira F, Park YM, Lee J, et al. The EMBL‐EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636‐W641. doi:10.1093/nar/gkz268 PubMed DOI PMC
Bateman A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506‐D515. doi:10.1093/nar/gky1049 PubMed DOI PMC
DeLano WL, Lam JW. PyMOL: a communications tool for computational models. Abstr Pap Am Chem Soc. 2005;230:U1371‐U1372.
Fiser A, Sali A. ModLoop: automated modeling of loops in protein structures. Bioinformatics. 2003;19:2500‐2501. doi:10.1093/bioinformatics/btg362 PubMed DOI
Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein‐protein docking. Nat Protoc. 2017;12:255‐278. doi:10.1038/nprot.2016.169 PubMed DOI PMC
Krissinel E. Advances in PISA software for macromolecular assembly predictions from CCP4. Acta Cryst A. 2015;71:S40. doi:10.1107/S2053273315099362 DOI
Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306‐317. doi:10.1007/s008940100045 DOI
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696‐3713. doi:10.1021/acs.jctc.5b00255 PubMed DOI PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926‐935. doi:10.1063/1.445869 DOI
Hess B. P‐LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4:116‐122. doi:10.1021/ct700200b PubMed DOI
Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA. Molecular‐dynamics simulations on solvated biomolecular systems ‐ the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc. 1995;117:4193‐4194. doi:10.1021/ja00119a045 DOI
Martonak R, Laio A, Parrinello M. Predicting crystal structures: the Parrinello‐Rahman method revisited. Phys Rev Lett. 2003;90:75503. doi:10.1103/PhysRevLett.90.075503 PubMed DOI
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular‐dynamics with coupling to an external Bath. J Chem Phys. 1984;81:3684‐3690. doi:10.1063/1.448118 DOI
Ranjani J, Sheela A, Meena KP. Combination of NumPy, SciPy and Matplotlib/Pylab ‐ a good alternative methodology to MATLAB ‐A Comparative Analysis. IEEE; 2019.
Wang Y, Tang C, Wang EK, Wang J. Exploration of multi‐state conformational dynamics and underlying global functional landscape of maltose binding protein. PLoS Comput Biol. 2012;8:e1002471. doi:10.1371/journal.pcbi.1002471 PubMed DOI PMC
Tang C, Schwieters CD, Clore GM. Open‐to‐closed transition in apo maltose‐binding protein observed by paramagnetic NMR. Nature. 2007;449:1078‐U12. doi:10.1038/nature06232 PubMed DOI
Mchaourab HS, Oh KJ, Fang CJ, Hubbell WL. Conformation of T4 lysozyme in solution hinge‐bending motion and the substrate‐induced conformational transition studied by site‐directed spin labeling. Biochemistry. 1997;36:307‐316. doi:10.1021/bi962114m PubMed DOI
Yirdaw RB, Mchaourab HS. Direct observation of T4 lysozyme hinge‐bending motion by fluorescence correlation spectroscopy. Biophys J. 2012;103:1525‐1536. doi:10.1016/j.bpj.2012.07.053 PubMed DOI PMC
Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)‐round XIII. Proteins. 2019;87:1011‐1020. doi:10.1002/prot.25823 PubMed DOI PMC
Matsuno S, Ohue M, Akiyama Y. Multidomain protein structure prediction using information about residues interacting on multimeric protein interfaces. Biophys Physicobiol. 2020;17:2‐13. doi:10.2142/biophysico.BSJ-2019050 PubMed DOI PMC
Liu CC, Chin JX, Lee DY. SynLinker: an integrated system for designing linkers and synthetic fusion proteins. Bioinformatics. 2015;31:3700‐3702. doi:10.1093/bioinformatics/btv447 PubMed DOI
Hou J, Adhikari B, Tanner JJ, Cheng JL. SAXSDom: modeling multidomain protein structures using small‐angle X‐ray scattering data. Proteins. 2020;88:775‐787. doi:10.1002/prot.25865 PubMed DOI PMC
Hertig S, Goddard TD, Johnson GT, Ferrin TE. Multidomain assembler (MDA) generates models of large multidomain proteins. Biophys J. 2015;108:2097‐2102. doi:10.1016/j.bpj.2015.03.051 PubMed DOI PMC
Dukka BKC. Recent advances in sequence‐based protein structure prediction. Brief Bioinform. 2017;18:1021‐1032. doi:10.1093/bib/bbw070 PubMed DOI
Wollacott AM, Zanghellini A, Murphy P, Baker D. Prediction of structures of multidomain proteins from structures of the individual domains. Protein Sci. 2007;16:165‐175. doi:10.1110/ps.062270707 PubMed DOI PMC
Wodak SJ, Velankar S, Sternberg MJE. Modeling protein interactions and complexes in CAPRI: seventh CAPRI evaluation meeting, April 3‐5 EMBL‐EBI, Hinxton, UK. Proteins. 2020;88:913‐915. doi:10.1002/prot.25883 PubMed DOI