Fusion of two unrelated protein domains in a chimera protein and its 3D prediction: Justification of the x-ray reference structures as a prediction benchmark

. 2022 Dec ; 90 (12) : 2067-2079. [epub] 20220727

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35833233

Proteins are naturally formed by domains edging their functional and structural properties. A domain out of the context of an entire protein can retain its structure and to some extent also function on its own. These properties rationalize construction of artificial fusion multidomain proteins with unique combination of various functions. Information on the specific functional and structural characteristics of individual domains in the context of new artificial fusion proteins is inevitably encoded in sequential order of composing domains defining their mutual spatial positions. So the challenges in designing new proteins with new domain combinations lie dominantly in structure/function prediction and its context dependency. Despite the enormous body of publications on artificial fusion proteins, the task of their structure/function prediction is complex and nontrivial. The degree of spatial freedom facilitated by a linker between domains and their mutual orientation driven by noncovalent interactions is beyond a simple and straightforward methodology to predict their structure with reasonable accuracy. In the presented manuscript, we tested methodology using available modeling tools and computational methods. We show that the process and methodology of such prediction are not straightforward and must be done with care even when recently introduced AlphaFold II is used. We also addressed a question of benchmarking standards for prediction of multidomain protein structures-x-ray or Nuclear Magnetic Resonance experiments. On the study of six two-domain protein chimeras as well as their composing domains and their x-ray structures selected from PDB, we conclude that the major obstacle for justified prediction is inappropriate sampling of the conformational space by the explored methods. On the other hands, we can still address particular steps of the methodology and improve the process of chimera proteins prediction.

Zobrazit více v PubMed

Naveenkumar N, Kumar G, Sowdhamini R, Srinivasan N, Vishwanath S. Fold combinations in multi‐domain proteins. Bioinformation. 2019;15:342‐350. doi:10.6026/97320630015342 PubMed DOI PMC

Dawson NL, Lewis TE, Das S, et al. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res. 2017;45:D289‐D295. PubMed PMC

Dunn HA, Ferguson SS. PDZ protein regulation of G protein‐coupled receptor trafficking and signaling pathways. Mol Pharmacol. 2015;88:624‐639. doi:10.1124/mol.115.098509 PubMed DOI

Kummerfeld SK, Teichmann SA. Protein domain organisation: adding order. BMC Bioinformatics. 2009;10:39. doi:10.1186/1471-2105-10-39 PubMed DOI PMC

Yu K, Liu C, Kim BG, Lee DY. Synthetic fusion protein design and applications. Biotechnol Adv. 2015;33:155‐164. doi:10.1016/j.biotechadv.2014.11.005 PubMed DOI

Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J. 2012;7:620‐634. doi:10.1002/biot.201100155 PubMed DOI

Waugh DS. Crystal structures of MBP fusion proteins. Protein Sci. 2016;25:559‐571. doi:10.1002/pro.2863 PubMed DOI PMC

Li S, Chen LX, Peng XH, et al. Overview of the reporter genes and reporter mouse models. Anim Model Exp Med. 2018;1:29‐35. doi:10.1002/ame2.12008 PubMed DOI PMC

Navale GR, Sharma P, Said MS, et al. Enhancing epi‐cedrol production in Escherichia coli by fusion expression of farnesyl pyrophosphate synthase and epi‐cedrol synthase. Eng Life Sci. 2019;19:606‐616. doi:10.1002/elsc.201900103 PubMed DOI PMC

Fan L, Wang Y, Tuyishime P, et al. Engineering artificial fusion proteins for enhanced methanol bioconversion. Chembiochem. 2018;19:2465‐2471. doi:10.1002/cbic.201800424 PubMed DOI

Teillaud JL. Engineering of monoclonal antibodies and antibody‐based fusion proteins: successes and challenges. Expert Opin Biol Ther. 2005;5:S15‐S27. doi:10.1517/14712598.5.1.S15 PubMed DOI

Beck A, Reichert JM. Therapeutic fc‐fusion proteins and peptides as successful alternatives to antibodies. MAbs. 2011;3:415‐416. doi:10.4161/mabs.3.5.17334 PubMed DOI PMC

Hutmacher C, Neri D. Antibody‐cytokine fusion proteins: biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev. 2019;141:67‐91. doi:10.1016/j.addr.2018.09.002 PubMed DOI

Wang LL, Xu JY, Kong Y, et al. Engineering a novel antibody‐peptide bispecific fusion protein against MERS‐CoV. Antibodies. 2019;8. doi:10.3390/antib8040053 PubMed DOI PMC

Caravella JA, Wang DP, Glaser SM, Lugovskoy A. Structure‐guided design of antibodies. Curr Comput Aided Drug des. 2010;6:128‐138. PubMed

Iyengar ARS, Gupta S, Jawalekar S, Pande AH. Protein chimerization: a new frontier for engineering protein therapeutics with improved pharmacokinetics. J Pharmacol Exp Ther. 2019;370:703‐714. doi:10.1124/jpet.119.257063 PubMed DOI

Kintzing JR, Interrante MVF, Cochrane JR. Emerging strategies for developing next‐generation protein therapeutics for cancer treatment. Trends Pharmacol Sci. 2016;37:993‐1008. doi:10.1016/j.tips.2016.10.005 PubMed DOI PMC

Trang VH, Zhang XQ, Yumul RC, et al. A coiled‐coil masking domain for selective activation of therapeutic antibodies. Nat Biotechnol. 2019;37:761. doi:10.1038/s41587-019-0135-x PubMed DOI

Yang Y, Aloysius H, Inoyama D, Chen Y, Hu L. Enzyme‐mediated hydrolytic activation of prodrugs. Acta Pharm Sin B. 2011;1:143‐159. doi:10.1016/j.apsb.2011.08.001 DOI

Xu D, Jaroszewski L, Li Z, Godzik A. AIDA: ab initio domain assembly for automated multi‐domain protein structure prediction and domain‐domain interaction prediction. Bioinformatics. 2015;31:2098‐2105. doi:10.1093/bioinformatics/btv092 PubMed DOI PMC

Zhou XG, Hu J, Zhang CX, Zhang GJ, Zhang Y. Assembling multidomain protein structures through analogous global structural alignments. Proc Natl Acad Sci U S A. 2019;116:15930‐15938. doi:10.1073/pnas.1905068116 PubMed DOI PMC

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583‐589. doi:10.1038/s41586-021-03819-2 PubMed DOI PMC

Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Res. 2022;50:D439‐D444. doi:10.1093/nar/gkab1061 PubMed DOI PMC

Verma R, Pandit SB. Unraveling the structural landscape of intra‐chain domain interfaces: implication in the evolution of domain‐domain interactions. PLoS One. 2019;14:e0220336. doi:10.1371/journal.pone.0220336 PubMed DOI PMC

Nanev CN. Application of mean‐separation‐works method to protein crystal nucleation. Cryst Res Technol. 2008;43:229‐233. doi:10.1002/crat.200711085 DOI

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774‐797. doi:10.1016/j.jmb.2007.05.022 PubMed DOI

Jimenez‐Garcia B, Elez K, Koukos PI, Bonvin AM, Vangone A. PRODIGY‐crystal: a web‐tool for classification of biological interfaces in protein complexes. Bioinformatics. 2019;35:4821‐4823. doi:10.1093/bioinformatics/btz437 PubMed DOI PMC

Carlon A, Ravera E, Parigi G, Murshudov GN, Luchinat C. Joint X‐ray/NMR structure refinement of multidomain/multisubunit systems. J Biomol NMR. 2019;73:265‐278. doi:10.1007/s10858-018-0212-3 PubMed DOI PMC

Garbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein AV, Galzitskaya OV. Comparison of X‐ray and NMR structures: is there a systematic difference in residue contacts between X‐ray and NMR‐resolved protein structures? Proteins. 2005;60:139‐147. doi:10.1002/prot.20491 PubMed DOI

Schneider M, Fu XR, Keating AE. X‐ray vs. NMR structures as templates for computational protein design. Proteins. 2009;77:97‐110. doi:10.1002/prot.22421 PubMed DOI PMC

Qian B, Raman S, Das R, et al. High‐resolution structure prediction and the crystallographic phase problem. Nature. 2007;450:259‐264. doi:10.1038/nature06249 PubMed DOI PMC

Childers MC, Daggett V. Insights from molecular dynamics simulations for computational protein design. Mol Syst Des Eng. 2017;2:9‐33. doi:10.1039/C6ME00083E PubMed DOI PMC

Zhang JH, Yun J, Shang ZG, Zhang XH, Pan BR. Design and optimization of a linker for fusion protein construction. Prog Nat Sci Int. 2009;19:1197‐1200. doi:10.1016/j.pnsc.2008.12.007 DOI

Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65:1357‐1369. doi:10.1016/j.addr.2012.09.039 PubMed DOI PMC

Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235‐242. PubMed PMC

Madeira F, Park YM, Lee J, et al. The EMBL‐EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636‐W641. doi:10.1093/nar/gkz268 PubMed DOI PMC

Bateman A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506‐D515. doi:10.1093/nar/gky1049 PubMed DOI PMC

DeLano WL, Lam JW. PyMOL: a communications tool for computational models. Abstr Pap Am Chem Soc. 2005;230:U1371‐U1372.

Fiser A, Sali A. ModLoop: automated modeling of loops in protein structures. Bioinformatics. 2003;19:2500‐2501. doi:10.1093/bioinformatics/btg362 PubMed DOI

Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein‐protein docking. Nat Protoc. 2017;12:255‐278. doi:10.1038/nprot.2016.169 PubMed DOI PMC

Krissinel E. Advances in PISA software for macromolecular assembly predictions from CCP4. Acta Cryst A. 2015;71:S40. doi:10.1107/S2053273315099362 DOI

Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306‐317. doi:10.1007/s008940100045 DOI

Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11:3696‐3713. doi:10.1021/acs.jctc.5b00255 PubMed DOI PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926‐935. doi:10.1063/1.445869 DOI

Hess B. P‐LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4:116‐122. doi:10.1021/ct700200b PubMed DOI

Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA. Molecular‐dynamics simulations on solvated biomolecular systems ‐ the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc. 1995;117:4193‐4194. doi:10.1021/ja00119a045 DOI

Martonak R, Laio A, Parrinello M. Predicting crystal structures: the Parrinello‐Rahman method revisited. Phys Rev Lett. 2003;90:75503. doi:10.1103/PhysRevLett.90.075503 PubMed DOI

Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular‐dynamics with coupling to an external Bath. J Chem Phys. 1984;81:3684‐3690. doi:10.1063/1.448118 DOI

Ranjani J, Sheela A, Meena KP. Combination of NumPy, SciPy and Matplotlib/Pylab ‐ a good alternative methodology to MATLAB ‐A Comparative Analysis. IEEE; 2019.

Wang Y, Tang C, Wang EK, Wang J. Exploration of multi‐state conformational dynamics and underlying global functional landscape of maltose binding protein. PLoS Comput Biol. 2012;8:e1002471. doi:10.1371/journal.pcbi.1002471 PubMed DOI PMC

Tang C, Schwieters CD, Clore GM. Open‐to‐closed transition in apo maltose‐binding protein observed by paramagnetic NMR. Nature. 2007;449:1078‐U12. doi:10.1038/nature06232 PubMed DOI

Mchaourab HS, Oh KJ, Fang CJ, Hubbell WL. Conformation of T4 lysozyme in solution hinge‐bending motion and the substrate‐induced conformational transition studied by site‐directed spin labeling. Biochemistry. 1997;36:307‐316. doi:10.1021/bi962114m PubMed DOI

Yirdaw RB, Mchaourab HS. Direct observation of T4 lysozyme hinge‐bending motion by fluorescence correlation spectroscopy. Biophys J. 2012;103:1525‐1536. doi:10.1016/j.bpj.2012.07.053 PubMed DOI PMC

Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)‐round XIII. Proteins. 2019;87:1011‐1020. doi:10.1002/prot.25823 PubMed DOI PMC

Matsuno S, Ohue M, Akiyama Y. Multidomain protein structure prediction using information about residues interacting on multimeric protein interfaces. Biophys Physicobiol. 2020;17:2‐13. doi:10.2142/biophysico.BSJ-2019050 PubMed DOI PMC

Liu CC, Chin JX, Lee DY. SynLinker: an integrated system for designing linkers and synthetic fusion proteins. Bioinformatics. 2015;31:3700‐3702. doi:10.1093/bioinformatics/btv447 PubMed DOI

Hou J, Adhikari B, Tanner JJ, Cheng JL. SAXSDom: modeling multidomain protein structures using small‐angle X‐ray scattering data. Proteins. 2020;88:775‐787. doi:10.1002/prot.25865 PubMed DOI PMC

Hertig S, Goddard TD, Johnson GT, Ferrin TE. Multidomain assembler (MDA) generates models of large multidomain proteins. Biophys J. 2015;108:2097‐2102. doi:10.1016/j.bpj.2015.03.051 PubMed DOI PMC

Dukka BKC. Recent advances in sequence‐based protein structure prediction. Brief Bioinform. 2017;18:1021‐1032. doi:10.1093/bib/bbw070 PubMed DOI

Wollacott AM, Zanghellini A, Murphy P, Baker D. Prediction of structures of multidomain proteins from structures of the individual domains. Protein Sci. 2007;16:165‐175. doi:10.1110/ps.062270707 PubMed DOI PMC

Wodak SJ, Velankar S, Sternberg MJE. Modeling protein interactions and complexes in CAPRI: seventh CAPRI evaluation meeting, April 3‐5 EMBL‐EBI, Hinxton, UK. Proteins. 2020;88:913‐915. doi:10.1002/prot.25883 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...