Nanofibrous Online Solid-Phase Extraction Coupled with Liquid Chromatography for the Determination of Neonicotinoid Pesticides in River Waters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19297S
Czech Science Foundation
Z.02.1.01/0.0/0.0/15_003/0000465
STARSS
RED2018-102522-T
Spanish Ministry of Science, Innovation and Universities
PubMed
35877852
PubMed Central
PMC9319645
DOI
10.3390/membranes12070648
PII: membranes12070648
Knihovny.cz E-zdroje
- Klíčová slova
- Lab-In-Syringe, membrane preconcentration, nanofibers, neonicotinoids, online SPE,
- Publikační typ
- časopisecké články MeSH
Polymeric nano- and microfibers were tested as potential sorbents for the extraction of five neonicotinoids from natural waters. Nanofibrous mats were prepared from polycaprolactone, polyvinylidene fluoride, polystyrene, polyamide 6, polyacrylonitrile, and polyimide, as well as microfibers of polyethylene, a polycaprolactone nano- and microfiber conjugate, and polycaprolactone microfibers combined with polyvinylidene fluoride nanofibers. Polyimide nanofibers were selected as the most suitable sorbent for these analytes and the matrix. A Lab-In-Syringe system enabled automated preconcentration via online SPE of large sample volumes at low pressure with analyte separation by HPLC. Several mat layers were housed in a solvent filter holder integrated into the injection loop of an HPLC system. After loading 2 mL sample on the sorbent, the mobile phase eluted the retained analytes onto the chromatographic column. Extraction efficiencies of 68.8-83.4% were achieved. Large preconcentration factors ranging from 70 to 82 allowed reaching LOD and LOQ values of 0.4 to 1.7 and 1.2 to 5.5 µg·L-1, respectively. Analyte recoveries from spiked river waters ranged from 53.8% to 113.3% at the 5 µg·L-1 level and from 62.8% to 119.8% at the 20 µg·L-1 level. The developed methodology proved suitable for the determination of thiamethoxam, clothianidin, imidacloprid, and thiacloprid, whereas matrix peak overlapping inhibited quantification of acetamiprid.
Zobrazit více v PubMed
Matsuda K., Buckingham S.D., Kleier D., Rauh J.J., Grauso M., Sattelle D.B. Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 2001;22:573–580. doi: 10.1016/S0165-6147(00)01820-4. PubMed DOI
Kundoo A.A., Dar S.A., Mushtaq M., Bashir Z., Dar M.S., Gul S., Ali M.T., Gulzar S. Role of neonicotinoids in insect pest management: A review. J. Entomol. Zool. Stud. 2018;6:333–339.
Craddock H.A., Huang D., Turner P.C., Quirós-Alcalá L., Payne-Sturges D.C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health. 2019;18:7–22. doi: 10.1186/s12940-018-0441-7. PubMed DOI PMC
Elbert A., Haas M., Springer B., Thielert W., Nauen R. Applied aspects of neonicotinoid uses in crop protection. Pest. Manag. Sci. 2008;64:1099–1105. doi: 10.1002/ps.1616. PubMed DOI
Jeschke P., Nauen R., Schindler M., Elbert A. Overview of the Status and Global Strategy for Neonicotinoids. J. Agric. Food Chem. 2011;59:2897–2908. doi: 10.1021/jf101303g. PubMed DOI
Friedli A., Williams G.R., Bruckner S., Neumann P., Straub L. The weakest link: Haploid honey bees are more susceptible to neonicotinoid insecticides. Chemosphere. 2020;242:125145. doi: 10.1016/j.chemosphere.2019.125145. PubMed DOI
Sánchez-Bayo F. Environmental science. The trouble with neonicotinoids. Science. 2014;346:806–807. doi: 10.1126/science.1259159. PubMed DOI
European Commission Commission Implementing Regulation (EU) No 485/2013 of 24 May 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances. Off. J. Eur. Union. 2013;139:12–26.
Food Safety-European Commission. 2019. [(accessed on 13 December 2021)]. Available online: https://ec.europa.eu/food/plant/pesticides/approval_active_substances/approval_renewal/neonicotinoids_en.
Van der Sluijs J.P., Amaral-Rogers V., Belzunces L.P., Bijleveld van Lexmond M.F.I.J., Bonmatin J.M., Chagnon M., Downs C.A., Furlan L., Gibbons D.W., Giorio C., et al. Conclusions of the worldwide integrated assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ. Sci. Pollut. Res. Int. 2015;22:148–154. doi: 10.1007/s11356-014-3229-5. PubMed DOI PMC
Abdel-Ghany M.F., Hussein L.A., El Azab N.F. Multiresidue analysis of five neonicotinoid insecticides and their primary metabolite in cucumbers and soil using high-performance liquid chromatography with diode-array detection. J. AOAC Int. 2017;100:176–188. doi: 10.5740/jaoacint.16-0162. PubMed DOI
Campillo N., Viñas P., Férez-Melgarejo G., Hernández-Córdoba M. Liquid chromatography with diode array detection and tandem mass spectrometry for the determination of neonicotinoid insecticides in honey samples using dispersive liquid-liquid microextraction. J. Agric. Food Chem. 2013;61:4799–4805. doi: 10.1021/jf400669b. PubMed DOI
Carbonell-Rozas L., Lara F.J., del Olmo Iruela M., García-Campaña A.M. A novel approach based on capillary liquid chromatography for the simultaneous determination of neonicotinoid residues in cereal samples. Microchem. J. 2021;161:105756. doi: 10.1016/j.microc.2020.105756. DOI
Martel A.-C., Lair C. Validation of a highly sensitive method for the determination of neonicotinoid insecticides residues in honeybees by liquid chromatography with electrospray tandem mass spectrometry. Intern. J. Environm. Anal. Chem. 2011;91:978–988. doi: 10.1080/03067310903524822. DOI
Suganthi A., Bhuvaneswari K., Ramya M. Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS. Food Chem. 2018;241:275–280. doi: 10.1016/j.foodchem.2017.08.098. PubMed DOI
Valverde S., Ares A.M., Arribas M., Bernal J.L., Nozal M.J., Bernal J. Development and validation of UHPLC–MS/MS methods for determination of neonicotinoid insecticides in royal jelly-based products. J. Food Compos. Anal. 2018;70:105–113. doi: 10.1016/j.jfca.2018.05.002. DOI
Da Silva Sousa J., Oliveira do Nascimento H., Hiago de Oliveira Gomes H., Ferreira do Nascimento R. Pesticide residues in groundwater and surface water: Recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchem. J. 2021;168:106359. doi: 10.1016/j.microc.2021.106359. DOI
Zhang S., Yang X., Yin X., Wang C., Wang Z. Dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for the determination of some neonicotinoid insecticides in cucumber samples. Food Chem. 2012;133:544–550. doi: 10.1016/j.foodchem.2012.01.028. PubMed DOI
Jovanov P., Guzsvany V., Franko M., Lazic S., Sakac M., Saric B., Banjac V. Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta. 2013;111:125–133. doi: 10.1016/j.talanta.2013.02.059. PubMed DOI
Lachat L., Glauser G. Development and Validation of an ultra-sensitive UHPLC-MS/MS method for neonicotinoid analysis in milk. J. Agric. Food Chem. 2018;66:8639–8646. doi: 10.1021/acs.jafc.8b03005. PubMed DOI
David A., Botias C., Abdul-Sada A., Goulson D., Hill E.M. Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled down QuEChERS method for exposure assessment. Anal. Bioanal. Chem. 2015;407:8151–8162. doi: 10.1007/s00216-015-8986-6. PubMed DOI
Song S., Zhang C., Chen Z., He F., Wei J., Tan H., Li X. Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC-MS/MS with anion exchanger-disposable pipette extraction. J. Chromatogr. A. 2018;1557:51–61. doi: 10.1016/j.chroma.2018.05.003. PubMed DOI
Wang D., Liu Y., Xu Z., Ji Y., Si X., Lin T., Liu H., Liu Z. Generic imprinted fiber array strategy for high-throughput and ultrasensitive simultaneous determination of multiple neonicotinoids. Food Chem. 2022;382:132407. doi: 10.1016/j.foodchem.2022.132407. PubMed DOI
Di Ottavio F., Della Pelle F., Montesano C., Scarpone R., Escarpa A., Compagnone D., Sergi M. Determination of Pesticides in Wheat Flour Using Microextraction on Packed Sorbent Coupled to Ultra-High Performance Liquid Chromatography and Tandem Mass Spectrometry. Food Anal. Methods. 2017;10:1699–1708. doi: 10.1007/s12161-016-0720-2. DOI
Ettiene G., Bauza R., Plata M.R., Contento A.M., Ríos Á. Determination of neonicotinoid insecticides in environmental samples by micellar electrokinetic chromatography using solid-phase treatments. Electrophoresis. 2012;33:2969–2977. doi: 10.1002/elps.201200241. PubMed DOI
Carbonell-Rozas L., Lara F.J., del Olmo Iruela M., García-Campaña A.M. Micellar electrokinetic chromatography as efficient alternative for the multiresidue determination of seven neonicotinoids and 6-chloronicotinic acid in environmental samples. Anal. Bioanal. Chem. 2020;412:6231–6240. doi: 10.1007/s00216-019-02233-y. PubMed DOI
Di Muccio A., Fidente P., Barbini D.A., Dommarco R., Seccia S., Morrica P. Application of solid-phase extraction and liquid chromatography-mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J. Chromatogr. A. 2006;1108:1–6. doi: 10.1016/j.chroma.2005.12.111. PubMed DOI
Yáñez K.P., Bernal J.L., Nozal M.J., Martín M.T., Bernal J. Determination of seven neonicotinoid insecticides in beeswax by liquid chromatography coupled to electrospray-mass spectrometry using a fused-core column. J. Chromatogr. A. 2013;1285:110–117. doi: 10.1016/j.chroma.2013.02.032. PubMed DOI
Montiel-León J.M., Duy S.V., Munoz G., Amyot M., Sauvé S. Evaluation of on-line concentration coupled to liquid chromatography tandem mass spectrometry for the quantification of neonicotinoids and fipronil in surface water and tap water. Anal. Bioanal. Chem. 2018;410:2765–2779. doi: 10.1007/s00216-018-0957-2. PubMed DOI
Háková M., Havlíková L.C., Chvojka J., Erben J., Solich P., Švec F. Šatínský, D. Polycaprolactone nanofibers functionalized with a dopamine coating for on-line solid phase extraction of bisphenols, betablockers, nonsteroidal drugs, and phenolic acids. Microchim. Acta. 2019;186:710. doi: 10.1007/s00604-019-3846-2. PubMed DOI
Háková M., Chocholouš P., Valachovič A., Erben J., Chvojka J., Solich P., Švec F., Šatínský D. On-line polydopamine coating as a new way to functionalize polypropylene fiber sorbent for solid phase extraction. Talanta. 2020;219:121189. doi: 10.1016/j.talanta.2020.121189. PubMed DOI
Háková M., Havlíková L.C., Švec F., Solich P., Šatínský D. Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: A tutorial. Anal. Chim. Acta. 2020;1121:83–96. doi: 10.1016/j.aca.2020.04.045. PubMed DOI
Šrámková I.H., Carbonell-Rozas L., Horstkotte B., Háková M., Erben J., Chvojka J., Švec F., Solich P., García-Campaña A.M., Šatínský D. Screening of extraction properties of nanofibers in a sequential injection analysis system using a 3D printed device. Talanta. 2019;197:517–521. doi: 10.1016/j.talanta.2019.01.050. PubMed DOI
Maya F., Horstkotte B., Estela J.M., Cerda V. Lab in a syringe: Fully automated dispersive liquid-liquid microextraction with integrated spectrophotometric detection. Anal. Bioanal. Chem. 2012;404:909–917. doi: 10.1007/s00216-012-6159-4. PubMed DOI
Horstkotte B., Solich P. The automation technique Lab-In-Syringe: A practical guide. Molecules. 2020;25:1612. doi: 10.3390/molecules25071612. PubMed DOI PMC
Šrámková I.H., Horstkotte B., Erben J., Chvojka J., Švec F., Solich P., Šatínský D. 3D-printed magnetic stirring cages for semidispersive extraction of bisphenols from water using polymer micro- and nanofibers. Anal. Chem. 2020;92:3964–3971. doi: 10.1021/acs.analchem.9b05455. PubMed DOI
Háková M., Havlíková L.C., Chvojka J., Švec F., Solich P., Šatínský D. Nanofiber polymers as novel sorbents for on-line solid phase extraction in chromatographic system: A comparison with monolithic reversed phase C18 sorbent. Anal. Chim. Acta. 2018;1018:26–34. doi: 10.1016/j.aca.2018.02.065. PubMed DOI
Háková M., Havlíková L.C., Chvojka J., Erben J., Solich P., Švec F., Šatínský D. A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as sorbents for on-line solid phase extraction in chromatography system. Anal. Chim. Acta. 2018;1023:44–52. doi: 10.1016/j.aca.2018.04.023. PubMed DOI
Háková M., Havlíková L.C., Švec F., Solich P., Erben J., Chvojka J., Šatínský D. Novel nanofibrous sorbents for the extraction and determination of resveratrol in wine. Talanta. 2020;206:120181. doi: 10.1016/j.talanta.2019.120181. PubMed DOI
Fikarová K., Horstkotte B., Machián D., Sklenářová H., Solich P. Lab-In-Syringe for automated double-stage sample preparation by coupling salting out liquid-liquid extraction with online solid-phase extraction and liquid chromatographic separation for sulfonamide antibiotics from urine. Talanta. 2021;221:121427. doi: 10.1016/j.talanta.2020.121427. PubMed DOI
Cocovi-Solberg D.J., Miro M. CocoSoft: Educational software for automation in the analytical chemistry laboratory. Anal. Bioanal. Chem. 2015;407:6227–6233. doi: 10.1007/s00216-015-8834-8. PubMed DOI
Vichapong J., Burakham R., Srijaranai S. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction with solidification of floating organic droplet combined with HPLC for the determination of neonicotinoid pesticides. Talanta. 2013;117:221–228. doi: 10.1016/j.talanta.2013.08.034. PubMed DOI
Pihlström T., Fernández-Alba A.R., Gamón M., Amate C.F., Poulsen M.E., Lippold R., Anastassiades M. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. [(accessed on 2 April 2022)];Sante. 2017 11813:21–22. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf.
Kachangoon R., Vichapong J., Burakham R., Santaladchaiyakit Y., Srijaranai S. Ultrasonically modified amended-cloud point extraction for simultaneous pre-concentration of neonicotinoid insecticide residues. Molecules. 2018;23:1165. doi: 10.3390/molecules23051165. PubMed DOI PMC
Wang P., Yang X., Wang J., Cui J., Dong A.J., Zhao H.T., Zhang L.W., Wang Z.Y., Xu R.B., Li W.J., et al. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid-liquid micro-extraction by high performance liquid chromatography. Food Chem. 2012;134:1691–1698. doi: 10.1016/j.foodchem.2012.03.103. PubMed DOI
Moyakao K., Santaladchaiyakit Y., Srijaranai S., Vichapong J. Preconcentration of trace neonicotinoid insecticide residues using vortex-assisted dispersive micro solid-phase extraction with montmorillonite as an efficient sorbent. Molecules. 2018;23:883. doi: 10.3390/molecules23040883. PubMed DOI PMC
Badawy M.E.I., Ismail A.M.E., Ibrahim A.I.H. Quantitative analysis of acetamiprid and imidacloprid residues in tomato fruits under greenhouse conditions. J. Environm. Sci. Health Part B. 2019;54:898–905. doi: 10.1080/03601234.2019.1641389. PubMed DOI
Jovanov P., Guzsvány V., Lazić S., Franko M., Sakač M., Šarić L., Kos J. Development of HPLC-DAD method for determination of neonicotinoids in honey. J. Food Compos. Anal. 2015;40:106–113. doi: 10.1016/j.jfca.2014.12.021. DOI
Mahdavi V., Garshasbi Z., Farimani M.M., Farhadpour M., Aboul-Enein H.Y. Health risk assessment of neonicotinoid insecticide residues in pistachio using a QuEChERS-based method in combination with HPLC-UV. Biomed. Chromatogr. 2020;34:e4747. doi: 10.1002/bmc.4747. PubMed DOI
Farajzadeh M.A., Bamorowat M., Mogaddam M.R.A. Ringer tablet-based ionic liquid phase microextraction: Application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples. Talanta. 2016;160:211–216. doi: 10.1016/j.talanta.2016.03.097. PubMed DOI
Vichapong J., Burakham R., Santaladchaiyakit Y., Srijaranai S. A preconcentration method for analysis of neonicotinoids in honey samples by ionic liquid-based cold-induced aggregation microextraction. Talanta. 2016;155:216–221. doi: 10.1016/j.talanta.2016.04.045. PubMed DOI
Chen W., Wu S., Zhang J., Yu F., Hou J., Miao X., Tu X. Matrix-induced sugaring-out: A simple and rapid sample preparation method for the determination of neonicotinoid pesticides in honey. Molecules. 2019;24:2761. doi: 10.3390/molecules24152761. PubMed DOI PMC
Mogaddam M.R.A., Farajzadeh M.A., Khodadadeian F., Nemati M., Mohebbi A. Development of simultaneously salt and ultrasonic-assisted liquid phase microextraction for the extraction of neonicotinoid insecticides from fresh fruit juices and fruit juices. Int. J. Environ. Anal. Chem. 2020;102:1697–1708. doi: 10.1080/03067319.2020.1742892. DOI
Zhang J., Wei Y., Li H., Zeng E.Y., You J. Application of Box–Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances. Talanta. 2017;170:392–398. doi: 10.1016/j.talanta.2017.04.031. PubMed DOI
Iancu V.-I., Radum G.-L. Occurrence of neonicotinoids in waste water from the Bucharest treatment plant. Anal. Methods. 2018;10:2691–2700. doi: 10.1039/C8AY00510A. DOI
Pena-Pereira F., Wojnowski W., Tobiszewski M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020;92:10076–10082. doi: 10.1021/acs.analchem.0c01887. PubMed DOI PMC