Safety and Pharmaceutical Evaluation of a Novel Natural Polymer, Ocicum, as Solubility and Dissolution Enhancer in Solid Dispersion

. 2022 Jul 14 ; 15 (7) : . [epub] 20220714

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35890167

Plant mucilages are commonly employed as excipients in pharmaceutical manufacturing. Ocimum basilicum (Lamiaceae family), a source of hydrophilic mucilage referred herein as Ocicum, was evaluated for the solubility enhancer of a model drug, aceclofenac, in solid dispersions prepared using different methods. Polymer was extracted from O. basilicum and solid dispersions of aceclofenac were fabricated with Ocicum or Poloxamer 407 using polymer-to-drug ratios of 1:1, 1:2 and 1:3 utilizing solvent evaporation, lyophilization and melt methods. Ocicum was evaluated for its safety via acute toxicity study including different biochemical and hematological parameters including liver and kidney profiles. Moreover, different characterization studies including melting-point, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and differential thermal analysis (TGA) were used for evaluation of polymer and solid dispersions. Furthermore, solubility and dissolution studies were performed to confirm solubility enhancement. Ocicum was found to be safer, and different characterization studies confirmed the purity of the compounds. In addition, Ocicum exhibited up to 6.27-fold enhanced solubility as compared to pure aceclofenac; similarly, 4.51-fold increased solubility by the synthetic polymer in their respective solid dispersions was shown. Furthermore, Ocicum-based solid dispersions showed substantial improvement in dissolution of aceclofenac. Therefore, it can be concluded from the above-mentioned results that Ocicum might be used as an economical natural oral delivery carrier alternative to the synthetic polymers.

Zobrazit více v PubMed

Avachat A.M., Dash R.R., Shrotriya S.N. Recent investigations of plant based natural gums, mucilages and resins in novel drug delivery systems. Ind. J. Pharm. Edu. Res. 2011;45:86–99.

Goswami S., Naik S. Natural gums and its pharmaceutical application. J. Sci. Innov. Res. 2014;3:112–121. doi: 10.31254/jsir.2014.3118. DOI

Kadam P.V., Yadav K.N., Jagdale S.K., Shivatare R.S., Bhilwade S.K., Patil M.J. Evaluation of Ocimum sanctum and Ocimum basillicum mucilage-as a pharmaceutical excipient. J. Chem. Pharm. Res. 2012;4:1950–1955.

Bhasin M. Ocimum-Taxonomy, medicinal potentialities and economic value of essential oil. J. Biosph. 2012;1:48–50.

Yousaf A.M., Malik U.R., Shahzad Y., Mahmood T., Hussain T. Silymarin-laden PVP-PEG polymeric composite for enhanced aqueous solubility and dissolution rate: Preparation and in vitro characterization. J. Pharm. Anal. 2019;9:34–39. doi: 10.1016/j.jpha.2018.09.003. PubMed DOI PMC

Ali S., Yousaf A.M., Raza S.A., Shahzad Y., Khan I.U., Mahmood T., Hussain T., Manzoor M., Riaz H., Jamshaid M. Preparation and in vitro characterization of polyvinylpyrrolidone-poloxamer polymeric synergy for oral drug delivery. J. Polym. Res. 2019;26:1–7. doi: 10.1007/s10965-019-1839-9. DOI

Fatima K., Bukhari N.I., Latif S., Afzal H., Hussain A., Shamim R., Abbas N. Amelioration of physicochemical, pharmaceutical, and pharmacokinetic properties of lornoxicam by cocrystallization with a novel coformer. Drug Dev. Ind. Pharm. 2021;47:498–508. doi: 10.1080/03639045.2021.1892744. PubMed DOI

Shamim R., Shafique S., Kanwal U., Hussain K., Asif N., Ijaz S., Abbas N., Bukhari N. Surfactant-Assisted Wet Granulation: A Simpler Approach to Improve Solubility and Sustain Ketoprofen Release. Lat. Am. J. Pharm. 2019;38:281–290.

Choi H.-G., Yousaf A., Kim D.-W., Oh Y.-K., Yong C.S., Kim J.O. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: Physicochemical characterization and in vivo investigation. Int. J. Nanomed. 2015;10:1819. doi: 10.2147/IJN.S78895. PubMed DOI PMC

Enose A.A., Dasan P.K., Sivaramakrishnan H., Shah S. Formulation and characterization of solid dispersion prepared by hot melt mixing: A fast screening approach for polymer selection. J. Pharm. 2014;2014:1–13. doi: 10.1155/2014/105382. PubMed DOI PMC

Rahman M., Ahmad S., Tarabokija J., Parker N., Bilgili E. Spray-dried amorphous solid dispersions of griseofulvin in HPC/soluplus/SDS: Elucidating the multifaceted impact of SDS as a minor component. Pharmaceutics. 2020;12:197. doi: 10.3390/pharmaceutics12030197. PubMed DOI PMC

Han F., Zhang W., Wang Y., Xi Z., Chen L., Li S., Xu L. Applying supercritical fluid technology to prepare ibuprofen solid dispersions with improved oral bioavailability. Pharmaceutics. 2019;11:67. doi: 10.3390/pharmaceutics11020067. PubMed DOI PMC

Yu D.-G., Li J.-J., Williams G.R., Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Control. Release. 2018;292:91–110. doi: 10.1016/j.jconrel.2018.08.016. PubMed DOI

Yousaf A.M., Ramzan M., Shahzad Y., Mahmood T., Jamshaid M. Fabrication and in vitro characterization of fenofibric acid-loaded hyaluronic acid–polyethylene glycol polymeric composites with enhanced drug solubility and dissolution rate. Int. J. Polym. Mater. Polym. Biomater. 2019;68:510–515. doi: 10.1080/00914037.2018.1466137. DOI

Hugo M., Kunath K., Dressman J. Selection of excipient, solvent and packaging to optimize the performance of spray-dried formulations: Case example fenofibrate. Drug Dev. Ind. Pharm. 2013;39:402–412. doi: 10.3109/03639045.2012.685176. PubMed DOI

Shaik N.B., Toleti M., Kanaru D., Kukati L. Solubility Enhancement of Aceclofenac by Solid Dispersion. Am. J. PharmTech Res. 2018;8:107–130. doi: 10.46624/ajptr.2018.v8.i3.010. DOI

Ghodekar S.V., Chaudhari S.P., Ratnaparakhi M. Development and characterization of silver sulfadiazine emulgel for topical drug delivery. Int. J. Pharm. Pharm. Sci. 2012;4:305–316.

Kim E.-J., Chun M.-K., Jang J.-S., Lee I.-H., Lee K.-R., Choi H.-K. Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur. J. Pharm. Biopharm. 2006;64:200–205. doi: 10.1016/j.ejpb.2006.04.001. PubMed DOI

Dugar R., Gajera B., Dave R.H. Fusion method for solubility and dissolution rate enhancement of ibuprofen using block copolymer poloxamer 407. AAPS PharmSciTech. 2016;17:1428–1440. doi: 10.1208/s12249-016-0482-6. PubMed DOI

Nandiyanto A.B.D., Oktiani R., Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019;4:97–118. doi: 10.17509/ijost.v4i1.15806. DOI

Jasper R., Locatelli G.O., Pilati C., Locatelli C. Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup®. Interdiscip. Toxicol. 2012;5:133. doi: 10.2478/v10102-012-0022-5. PubMed DOI PMC

O’Connell K.E., Mikkola A.M., Stepanek A.M., Vernet A., Hall C.D., Sun C.C., Yildirim E., Staropoli J.F., Lee J.T., Brown D.E. Practical murine hematopathology: A comparative review and implications for research. Comp. Med. 2015;65:96–113. PubMed PMC

Novak J., Fiero K., Seifert C., Bonilla C.A. Normal serum glutamic oxalaetic transaminase and alkaline phosphatase levels in albino mice. Comp. Biochem. Physiol. 1970;36:619–622. doi: 10.1016/0010-406X(70)91038-8. PubMed DOI

Sarangi M., Singh N. A comparative study of solubility enhancement of aceclofenac by solid dispersion technique using several polymers. J. Appl. Pharm. 2018;10:1–11.

Vadlamudi M.K., Dhanaraj S. Disparate practical way of doing solubility enhancement study to improve the bioavailability of poorly soluble drugs. J. Chem. Pharm. Res. 2016;8:208–235.

Chowdary K.P., Surya Prakasa Rao K. A Factorial Study on the Enhancement of Solubility and Dissolution Rate of BCS Class II Drugs Employing ß-Cyclodextrin, Poloxamer 407 and PVP. J. Pharm. Res. 2011;4:3010–3012.

Sohrab M., Mahapatra S.P., Tiwari S. Enhancement of dissolution rate of aceclofenac by formation of aceclofenac-nicotinic acid cocrystal using water soluble polymers like PVPK-30, HPMCE5, SSG and Na-CMC. Indo Glob. J. Pharm. Sci. 2015;5:154–170. doi: 10.35652/IGJPS.2015.01. DOI

Nazir S., Wani I.A., Masoodi F.A. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. J. Adv. Res. 2017;8:235–244. doi: 10.1016/j.jare.2017.01.003. PubMed DOI PMC

OECD . Organization for Economic Cooperation and Development (OECD) Guidelines For Testing of Chemicals, no. 423. OECD; Paris, France: 2001. Acute Oral Toxic. Acute Toxic Class Method.

Mehmood Y., Khan I.U., Shahzad Y., Khan R.U., Iqbal M.S., Khan H.A., Khalid I., Yousaf A.M., Khalid S.H., Asghar S., et al. In-vitro and in-vivo evaluation of velpatasvir-loaded mesoporous silica scaffolds. Prospect. Carr. Drug Bioavailab. Enhanc. Pharm. 2020;12:307. PubMed PMC

Costa F., Sousa J., Pais A., Formosinho S. Comparison of dissolution profiles of Ibuprofen pellets. J. Control. Release. 2003;89:199–212. doi: 10.1016/S0168-3659(03)00033-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...