• This record comes from PubMed

Role of Endothelial Kinin B1 Receptor on the Membrane Potential of Transgenic Rat Aorta

. 2022 Aug 31 ; 71 (4) : 477-487. [epub] 20220728

Language English Country Czech Republic Media print-electronic

Document type Journal Article

The kinin receptors are classically involved in inflammation, pain and sepsis. The effects of the kinin B1 receptor agonist des-Arg9-bradykinin (DBK) and lipopolysaccharide (LPS) were investigated by comparing the membrane potential responses of aortic rings from transgenic rats overexpressing the kinin B1 receptor (B1R) in the endothelium (TGR(Tie2B1)) and Sprague Dawley (SD) rats. No difference in the resting membrane potential in the aorta's smooth muscle from the transgenic and SD rats was observed. The aorta rings from SD rats hyperpolarized only to LPS but not to DBK, whereas the aorta rings from TGR(Tie2B1) responded by the administration of both drugs. DBK and LPS responses were inhibited by the B1 receptor antagonist R715 and by iberiotoxin in both cases. Thapsigargin induced a hyperpolarization in the smooth muscle of SD rats that was not reversed by R715, but was reversed by iberiotoxin and this hyperpolarization was further augmented by DBK administration. These results show that the model of overexpression of vascular B1 receptors in the TGR(Tie2B1) rats represent a good model to study the role of functional B1 receptors in the absence of any pathological stimulus. The data also show that KCa channels are the final mediators of the hyperpolarizing responses to DBK and LPS. In addition, we suggest an interaction between the B1R and TLR4, since the hyperpolarization induced by LPS could be abolished in the presence of R715.

See more in PubMed

Ahluwalia A, Perreti M. B1 receptors as a new inflammatory target. Could this B the 1. Trends Pharmacol Sci 1999. 1999;20:100–104. PubMed

Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57:27–77. doi: 10.1124/pr.57.1.2. PubMed DOI

Bhoola KD, Figueroa CD, Whorthy K. Bioregulation of kinins: kallikreins, kininogens and kininases. Pharmacol Rev. 1992;44:1–80. PubMed

Regoli D, Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980;32:1–46. PubMed

Merino VF, Todias M, Campos LA, Saul V, Popova E, Baltatu OC, Pesquero JB, Bader M. Increased susceptibility to endotoxic shock in transgenic rats with endothelial overexpression of kinin B(1) receptors. J Mol Med. 2008;86:791–798. doi: 10.1007/s00109-008-0345-z. PubMed DOI

Mori MA, Sales VM, Motta FL, Fonseca RG, Alenina N, Guadagnini D, Schadock I, Silva ED, Torres HA, Dos Santos EL, Castro CH, D'Almeida V, Andreotti S, Campaña AB, Sertié RA, Saad MJ, Lima FB, Bader M, Pesquero JB. Kinin B1 receptor in adipocytes regulates glucose tolerance and predisposition to obesity. PLoS One. 2012;7:e44782. PubMed PMC

Marceau F, Hess JF, Bachvarov DR. The B1 receptors for kinins. Pharmacol Rev. 1998;50:357–386. PubMed

McLean PG, Perretti M, Ahluwalia A. Kinin B(1) receptors and the cardiovascular system: regulation of expression and function. Cardiovasc Res. 2000;48:194–210. doi: 10.1016/S0008-6363(00)00184-X. PubMed DOI

Bone RC. The pathogenesis of sepsis. Ann Intern Med. 1991;115:457–469. doi: 10.7326/0003-4819-115-6-457. PubMed DOI

Bone RC. Gram-positive organisms and sepsis. Arch Intern Med. 1994;154:26–34. doi: 10.1001/archinte.1994.00420010044006. PubMed DOI

Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8 doi: 10.1128/ecosalplus.ESP-0001-2018. doi: 10.1128/ecosalplus.ESP-0001-2018. PubMed DOI PMC

Passos GF, Fernandes ES, Campos MM, Araújo JGVC, Pesquero JL, Souza GEP, Avellar MCW, Teixeira MM, Calixto JB. Kinin B1 receptor up-regulation after lipopolysaccharide administration: role of proinflammatory cytokines and neutrophil influx. J Immunol. 2004;172:1839–1847. doi: 10.4049/jimmunol.172.3.1839. PubMed DOI

Mitolo-Chieppa D, Serio M, Potenza MA, Montagnani M, Mansi G, Pece S, Jirillo E, Stoclet JC. Hyporeactivity of mesenteric vascular bed in endotoxin-treated rats. Eur J Pharmacol. 1996;309:175–182. doi: 10.1016/0014-2999(96)00347-0. PubMed DOI

Chen SJ, Wu CC, Yen MH. Role of nitric oxide and K+-channels in vascular hyporeactivity induced by endotoxin. Arch Pharmacol. 1999;359:493–499. doi: 10.1007/PL00005381. PubMed DOI

Chen SJ, Wu CC, Yang SN, Lin CI, Yen MH. Abnormal activation of K(+) channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence. Br J Pharmacol. 2000;131:213–222. doi: 10.1038/sj.bjp.0703564. PubMed DOI PMC

Rocha AC, Fernandes ES, Passos GF, Calixto JB, Campos MM. Assesment of TNFalpha contribution to the functional up-regulation of kinin B(1) receptors in the mouse paw after treatment with LPS. Int Immunopharmacol. 2005;5:1593–1600. doi: 10.1016/j.intimp.2005.04.007. PubMed DOI

McLean PG, Perretti M, Ahluwalia A. Inducible expression of the kinin B1 receptor in the endotoxemic heart: mechanisms of des-Arg9bradykinin-induced coronary vasodilation. Br J Pharmacol. 1999;128:275–282. doi: 10.1038/sj.bjp.0702743. PubMed DOI PMC

Pesquero JB, Araújo RC, Heppenstall PA, Stuck CL, Silva JA, Lewin GR, Bader M. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc Natl Acad Sci USA. 2000;97:8140–8145. doi: 10.1073/pnas.120035997. PubMed DOI PMC

Levy RF, Serra AJ, Antonio EL, Dos Santos L, Bocalini DS, Pesquero JB, Bader M, Merino VF, De Oliveira HA, Veiga ECA, Silva JA, Tucci PJF. Cardiac morphofunctional characteristics of transgenic rats with overexpression of the bradykinin B1 receptor in the endothelium. Physiol Res. 2017;66:925–932. doi: 10.33549/physiolres.933596. PubMed DOI

Farias NC, Feres T, Paiva ACM, Paiva TB. Lys-[Leu8, des-Arg9.-bradykinin blocks lipopolysaccharides-induced SHR aorta hyperpolarization by inhibition of Ca++- and ATP-dependent K+ channels. Eur J Pharmacol. 2004;498:163–169. doi: 10.1016/j.ejphar.2004.07.002. PubMed DOI

Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990;259:C3–C18. PubMed

Furchgott RF. The requirement for endothelial cells in the relaxation of arteries by acetylcholine and some other vasodilators. Trends Pharmacol Sci. 1981;2:173–176. doi: 10.1016/0165-6147(81)90303-5. DOI

Farias NC, Feres T, Paiva ACM, Paiva TB. Ca2+-dependent K+ channels are targets for bradykinin B1 receptor ligands and for lipopolysaccharide in the rat aorta. Eur J Pharmacol. 2005;525:123–127. doi: 10.1016/j.ejphar.2005.09.047. PubMed DOI

Schaeffer P, Laplace MC, Savi P, Probannaud V, Salel V, Herbert JM. Detection of bradykinin B1 receptors in rat aortic smooth muscle cells. Biochem Pharmacol. 2001;61:291–298. doi: 10.1016/S0006-2952(00)00554-2. PubMed DOI

Regoli D, Barabé J, Park WK. Receptors for bradykinin in rabbit aortae. Can J Physiol Pharmacol. 1977;55:855–867. doi: 10.1139/y77-115. PubMed DOI

Levesque L, Drapeau G, Grose JH, Rioux F, Marceau F. Vascular mode of action of kinin B1 receptors and development of a cellular model for the investigation of these receptors. Br J Pharmacol. 1993;109:1254–1262. doi: 10.1111/j.1476-5381.1993.tb13757.x. PubMed DOI PMC

Pruneau D, Bélichard P. Induction of bradykinin B1 receptor-mediated relaxation in the isolated rabbit carotid artery. Eur J Pharmacol. 1993;239:63–67. doi: 10.1016/0014-2999(93)90976-O. PubMed DOI

Drummond GR, Cocks TM. Endothelium-dependent relaxation to the B1 kinin receptor agonist des-Arg9-bradykinin in human coronary arteries. Br J Pharmacol. 1995;116:3083–3085. doi: 10.1111/j.1476-5381.1995.tb15108.x. PubMed DOI PMC

Ifuku M, Färber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, Merino VF, Kita S, Iwamoto T, Komuro I, Wang B, Cheung G, Ishikawa E, Ooboshi H, Bader M, Wada K, Kettenmann H, Noda M. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci. 2007;27:13065–13073. doi: 10.1523/JNEUROSCI.3467-07.2007. PubMed DOI PMC

Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci. 1990;87:2466–2470. doi: 10.1073/pnas.87.7.2466. PubMed DOI PMC

Treiman M, Caspersen C, Christensen SB. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci. 1998;19:131–135. doi: 10.1016/S0165-6147(98)01184-5. PubMed DOI

Medeiros R, Passos GF, Vitor CE, Koepp J, Mazzuco TL, Pianowski LF, Campos MM, Calixto JB. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br J Pharmacol. 2007;151:618–627. doi: 10.1038/sj.bjp.0707270. PubMed DOI PMC

Zhou X, Yang W, Li J. Ca2+-and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. J Biol Chem. 2006;281:31337–31347. doi: 10.1016/S0021-9258(19)84046-2. PubMed DOI

Barona I, Fagundes DS, Gonzalo S, Grasa L, Arruebo MP, Plaza MA, Murillo MD. Role of TLR4 and MAPK in the local effect of LPS on intestinal contractility. J Pharm Pharmacol. 2011;63:657–662. doi: 10.1111/j.2042-7158.2011.01253.x. PubMed DOI

Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539–552. doi: 10.1016/j.bcp.2009.04.029. PubMed DOI PMC

Jo H, Kim SY, Lee S, Jeong S, Kim SJ, Kang TM, Lee K. Kir3.1 channel is functionally involved in TLR4-mediated signaling. Biochem Biophys Res Commun. 2011;407:687–691. doi: 10.1016/j.bbrc.2011.03.076. PubMed DOI

Homer KL, Wanstall JC. Cyclic GMP-independent relaxation of rat pulmonary artery by spermine NONOate, a diazeniumdiolate nitric oxide donor. Br J Pharmacol. 2000;131:673–682. doi: 10.1038/sj.bjp.0703613. PubMed DOI PMC

Bialecki RA, Stinson-Fisher C. KCa channel antagonists reduce NO donor-mediated relaxation of vascular and tracheal smooth muscle. Am J Physiol. 1995;268:L152–L159. PubMed

Kitazono T, Ibayashi S, Nagao T, Fujii K, Fujishima M. Role of Ca(2+)-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo. Br J Pharmacol. 1997;120:102–106. doi: 10.1038/sj.bjp.0700880. PubMed DOI PMC

Li PL, Zou AP, Campbell WB. Regulation of potassium channels in coronary arterial smooth muscle by endothelium-derived vasodilators. Hypertension. 1997;29:262–267. doi: 10.1161/01.HYP.29.1.262. PubMed DOI

Satake N, Shibata M, Shibata S. The involvement of KCa, KATP, and KV channels in vasorelaxing responses to acetylcholine in rat aortic rings. Gen Pharmacol. 1997;28:453–457. doi: 10.1016/S0306-3623(96)00238-8. PubMed DOI

Sobey CG, Faraci FM. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide. Br J Pharmacol. 1999;126:1437–1443. doi: 10.1038/sj.bjp.0702439. PubMed DOI PMC

Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. Wiley Interdiscip Rev Syst Biol Med. 2019;11:e1448. PubMed PMC

Velasquez O, Wang B. Rutherfords Vascular Surgery, editor. Chapter 4: Cells of the vascular system. Elsevier; 2016.

McLean PG, Ahluwalia A, Perretti M. Association between kinin B1 receptor and leukocyte trafficking across mouse mesenteric postcapillary venules. J Exp Med. 2000;192:367–380. doi: 10.1084/jem.192.3.367. PubMed DOI PMC

Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, McCray PB, Chappell M, Hackam DJ, Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018;314:L17–L31. PubMed PMC

Munoz-Rodríguez C, Fernández S, Osorio JM, Olivares F, Anfossi R, Bolivar S, Humeres C, Boza P, Vivar R, Pardo-Jimenez V, Hemmings KE, Turner NA, Díaz-Araya G. Expression and function of TLR4-induced B1R bradykinin receptor on cardiac fibroblasts. Toxicol Appl Pharmacol. 2018;351:46–56. doi: 10.1016/j.taap.2018.05.0112. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...