The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- MS identification, antifouling surfaces, hemocompatibility, polymer brushes, protein adsorption,
- MeSH
- Adsorption MeSH
- Biocompatible Materials pharmacology chemistry MeSH
- Biofouling * prevention & control MeSH
- Humans MeSH
- Polymers chemistry MeSH
- Surface Properties MeSH
- Proteins MeSH
- Thrombosis * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Polymers MeSH
- Proteins MeSH
Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.
DWI Leibniz Institute for Interactive Materials Forckenbeckstraße 50 D 52074 Aachen Germany
Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 Barcelona 08010 Spain
Institute for Bioengineering of Catalonia Carrer de Baldiri Reixac 10 12 Barcelona 08028 Spain
Institute of Hematology and Blood Transfusion U Nemocnice 1 Prague 128 00 Czech Republic
See more in PubMed
R. Gbyli, A. Mercaldi, H. Sundaram, K. A. Amoako, Adv. Mater. Interfaces 2018, 5, 1700954.
B. D. Ratner, J. Biomed. Mater. Res. 1993, 27, 283.
B. D. Ratner, Biomaterials 2007, 28, 5144.
I. H. Jaffer, J. I. Weitz, Acta Biomater. 2019, 94, 2.
G. Makdisi, I. W. Wang, J. Thorac. Dis. 2015, 7, E166.
A. Hucknall, S. Rangarajan, A. Chilkoti, Adv. Mater. 2009, 21, 2441.
O. Pop-Georgievski, C. Rodriguez-Emmenegger, A. d. l. S. Pereira, V. Proks, E. Brynda, F. Rypáček, J. Mater. Chem. B 2013, 1, 2859.
C. Rodriguez-Emmenegger, E. Brynda, T. Riedel, M. Houska, V. Šubr, A. B. Alles, E. Hasan, J. E. Gautrot, W. T. S. Huck, Macromol. Rapid Commun. 2011, 32, 952.
M. Gorbet, C. Sperling, M. F. Maitz, C. A. Siedlecki, C. Werner, M. V. Sefton, Acta Biomater. 2019, 94, 25.
D. F. Mosher, Cardiovasc. Pathol. 1993, 2, 149.
C. Blaszykowski, S. Sheikh, M. Thompson, Chem. Soc. Rev. 2012, 41, 5599.
Q. Wei, T. Becherer, S. Angioletti-Uberti, J. Dzubiella, C. Wischke, A. T. Neffe, A. Lendlein, M. Ballauff, R. Haag, Angew. Chem., Int. Ed. Engl. 2014, 53, 8004.
T. Riedel, Z. Riedelová-Reicheltová, P. Májek, C. Rodriguez-Emmenegger, M. Houska, J. E. Dyr, E. Brynda, Langmuir 2013, 29, 3388.
C. Rodriguez Emmenegger, E. Brynda, T. Riedel, Z. Sedlakova, M. Houska, A. B. Alles, Langmuir 2009, 25, 6328.
S. M. Slack, Y. Cui, V. T. Turitto, Thromb. Haemostasis 1993, 70, 129.
M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J. E. Gautrot, Chem. Rev. 2014, 114, 10976.
M. Forinová, A. Pilipenco, I. Víšová, N. S. Lynn, J. Dostálek, H. Mašková, V. Hönig, M. Palus, M. Selinger, P. Kočová, F. Dyčka, J. Štěrba, M. Houska, M. Vrabcová, P. Horák, J. Anthi, C.-P. Tung, C.-M. Yu, C.-Y. Chen, Y.-C. Huang, P.-H. Tsai, S.-Y. Lin, H.-J. Hsu, A.-S. Yang, A. Dejneka, H. Vaisocherová-Lísalová, ACS Appl. Mater. Interfaces 2021, 13, 60612.
H. Vaisocherová, W. Yang, Z. Zhang, Z. Cao, G. Cheng, M. Piliarik, J. Homola, S. Jiang, Anal. Chem. 2008, 80, 7894.
T. Riedel, F. Surman, S. Hageneder, O. Pop-Georgievski, C. Noehammer, M. Hofner, E. Brynda, C. Rodriguez-Emmenegger, J. Dostálek, Biosens. Bioelectron. 2016, 85, 272.
L. Witzdam, Y. L. Meurer, M. Garay-Sarmiento, M. Vorobii, D. Söder, J. Quandt, T. Haraszti, C. Rodriguez-Emmenegger, Macromol. Biosci. 2022, 22, 2200025.
M. Garay-Sarmiento, L. Witzdam, M. Vorobii, C. Simons, N. Herrmann, A. de los Santos Pereira, E. Heine, I. El-Awaad, R. Lütticken, F. Jakob, U. Schwaneberg, C. Rodriguez-Emmenegger, Adv. Funct. Mater. 2022, 32, 2106656.
S. Dedisch, F. Obstals, A. de los Santos Pereira, M. Bruns, F. Jakob, U. Schwaneberg, C. Rodriguez-Emmenegger, Adv. Mater. Interfaces 2019, 6, 1900847.
F. Obstals, L. Witzdam, M. Garay-Sarmiento, N. Y. Kostina, J. Quandt, R. Rossaint, S. Singh, O. Grottke, C. Rodriguez-Emmenegger, ACS Appl. Mater. Interfaces 2021, 13, 11696.
K. A. Woodhouse, J. I. Weitz, J. L. Brash, Biomaterials 1996, 17, 75.
J. L. Brash, J. Biomater. Sci., Polym. Ed. 2000, 11, 1135.
T. Riedel, A. de los Santos Pereira, J. Táborská, Z. Riedelová, O. Pop-Georgievski, P. Májek, K. Pečánková, C. Rodriguez-Emmenegger, Macromol. Biosci. 2022, 22, 2100460.
C. Rodriguez-Emmenegger, S. Janel, A. de los Santos Pereira, M. Bruns, F. Lafont, Polym. Chem. 2015, 6, 5740.
A. de los Santos Pereira, T. Riedel, E. Brynda, C. Rodriguez-Emmenegger, Sens. Actuators, B 2014, 202, 1313.
T. Riedel, S. Hageneder, F. Surman, O. Pop-Georgievski, C. Noehammer, M. Hofner, E. Brynda, C. Rodriguez-Emmenegger, J. Dostálek, Anal. Chem. 2017, 89, 2972.
X. Li, S. Silge, A. Saal, G. Kircher, K. Koynov, R. Berger, H.-J. Butt, Langmuir 2021, 37, 1571.
S. Desseaux, J. P. Hinestrosa, N. Schüwer, B. S. Lokitz, J. F. Ankner, S. M. Kilbey, K. Voitchovsky, H.-A. Klok, Macromolecules 2016, 49, 4609.
Z. Yang, S. Zhang, V. V. Tarabara, M. L. Bruening, Macromolecules 2018, 51, 1161.
A. Kostruba, Y. Stetsyshyn, S. Mayevska, M. Yakovlev, P. Vankevych, Y. Nastishin, V. Kravets, Soft Matter 2018, 14, 1016.
Z. Zhang, J. A. Finlay, L. Wang, Y. Gao, J. A. Callow, M. E. Callow, S. Jiang, Langmuir 2009, 25, 13516.
J. N. Barbosa, M. C. L. Martins, S. C. Freitas, I. C. Gonçalves, A. P. Águas, M. A. Barbosa, J. Biomed. Mater. Res., Part A 2010, 93A, 12.
S. A. Smith, R. J. Travers, J. H. Morrissey, Crit. Rev. Biochem. Mol. Biol. 2015, 50, 326.
Y. Wu, Thromb. J. 2015, 13, 17.
Y. Mödinger, G. Q. Teixeira, C. Neidlinger-Wilke, A. Ignatius, Int. J. Mol. Sci. 2018, 19, 3367.
J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86.
J. R. Dunkelberger, W. C. Song, Cell Res. 2010, 20, 34.
A. d. l. S. Pereira, C. Rodriguez-Emmenegger, F. Surman, T. Riedel, A. B. Alles, E. Brynda, RSC Adv. 2014, 4, 2318.
R. A. Latour, Colloids Surf., B 2020, 191, 110992.
B. Sivaraman, R. A. Latour, Biomaterials 2010, 31, 832.
F. Surman, T. Riedel, M. Bruns, N. Y. Kostina, Z. Sedláková, C. Rodriguez-Emmenegger, Macromol. Biosci. 2015, 15, 636.
J. B. Schlenoff, Langmuir 2014, 30, 9625.
L. Digiacomo, F. Cardarelli, D. Pozzi, S. Palchetti, M. A. Digman, E. Gratton, A. L. Capriotti, M. Mahmoudi, G. Caracciolo, Nanoscale 2017, 9, 17254.
R. M. Cornelius, J. Macri, K. M. Cornelius, J. L. Brash, Langmuir 2015, 31, 12087.
R. M. Cornelius, J. Macri, K. M. Cornelius, J. L. Brash, Biointerphases 2016, 11, 029810.
R. M. Cornelius, J. Macri, J. L. Brash, J. Biomed. Mater. Res., Part A 2011, 99A, 109.
F. A. Orsi, W. M. Lijfering, A. Van der Laarse, L. R. Ruhaak, F. R. Rosendaal, S. C. Cannegieter, C. Cobbaert, Clin. Epidemiol. 2019, 11, 625.
M. van der Stoep, S. J. A. Korporaal, M. Van Eck, Cardiovasc. Res. 2014, 103, 362.
L. M. Vogt, E. Kwasniewicz, S. Talens, C. Scavenius, E. Bielecka, K. N. Ekdahl, J. J. Enghild, M. Mörgelin, T. Saxne, J. Potempa, A. M. Blom, J. Immunol. 2020, 204, 2779.
G. Gunkel, W. T. S. Huck, J. Am. Chem. Soc. 2013, 135, 7047.
G. A. Manderson, M. Martin, P. Önnerfjord, T. Saxne, A. Schmidtchen, T. E. Mollnes, D. Heinegård, A. M. Blom, Mol. Immunol. 2009, 46, 3388.
A. L. Jones, M. D. Hulett, C. R. Parish, Immunol. Cell Biol. 2005, 83, 106.
J. L. MacQuarrie, A. R. Stafford, J. W. Yau, B. A. Leslie, T. T. Vu, J. C. Fredenburgh, J. I. Weitz, Blood 2011, 117, 4134.
T. K. Truong, R. A. Malik, X. Yao, J. C. Fredenburgh, A. R. Stafford, H. M. Madarati, C. A. Kretz, J. I. Weitz, J. Thromb. Haemostasis 2022, 20, 821.
A. Aliyandi, C. Reker-Smit, R. Bron, I. S. Zuhorn, A. Salvati, ACS Biomater. Sci. Eng. 2021, 7, 5573.
K. T. Preissner, Annu. Rev. Cell Biol. 1991, 7, 275.
X. Gao, Z. Xu, Acta Biochim. Biophys. Sin. 2008, 40, 619.
P. Gunnarsson, L. Levander, P. Påhlsson, M. Grenegård, FASEB J. 2007, 21, 4059.
H. C. Cohen, D. C. Frost, T. J. Lieberthal, L. Li, W. J. Kao, Biomaterials 2015, 50, 47.
C. Rodriguez-Emmenegger, M. Houska, A. B. Alles, E. Brynda, Macromol. Biosci. 2012, 12, 1413.
K. Ulbrich, V. Subr, J. Strohalm, D. Plocová, M. Jelínková, B. Ríhová, J. Controlled Release 2000, 64, 63.
J. Rappsilber, M. Mann, Y. Ishihama, Nat. Protoc. 2007, 2, 1896.
K. Pecankova, P. Pecherkova, Z. Gasova, Z. Sovova, T. Riedel, E. Jäger, J. Cermak, P. Majek, PLoS One 2022, 17, e0262484.
J. Cox, M. Mann, Nat. Biotechnol. 2008, 26, 1367.
J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen, M. Mann, J. Proteome Res. 2011, 10, 1794.