An ancient alliance: Matching evolutionary patterns of cartilaginous fishes (Elasmobranchii) and chloromyxid parasites (Myxozoa)
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35932999
DOI
10.1016/j.meegid.2022.105346
PII: S1567-1348(22)00143-5
Knihovny.cz E-zdroje
- Klíčová slova
- Ancestral state reconstruction, Phylogenetic trajectories, Phylogeographic origin, Shark and ray, Species diversification,
- MeSH
- Elasmobranchii * genetika parazitologie MeSH
- fylogeneze MeSH
- Myxozoa * genetika MeSH
- paraziti * MeSH
- ryby parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Myxozoa is a group of endoparasitic cnidarians covering almost 2600 species but merely 53 species, mostly from the genus Chloromyxum, have been reported from sharks, rays, and skates (Elasmobranchii). Elasmobranchs play a key role in the study of evolutionary trajectories of myxozoans as they represent ancestral vertebrate hosts. Our study provides new data on Chloromyxum spp. from 57 elasmobranchs, covering 20 species from geographical regions and host groups not previously investigated, such as Lamniformes and Hexanchiformes, the most basal phylogenetic shark lineage. In total, 28% of elasmobranchs were infected with Chloromyxum spp., indicating high diversity. Of the seven distinguished species, six are formally described based on morphological, morphometric, and genetic (18S rDNA) data. Comprehensive co-phylogenetic analyses and ancestral state reconstruction revealed that parasite and host phylogenies are clearly correlated, resulting in a distinct phylogenetic separation of chloromyxids from selachid (shark) vs. batoid (ray and skate) hosts. Species infecting the most ancient elasmobranchs formed a sublineage, branching off in the middle of the Chloromyxum sensu stricto clade. Our findings indicate that chloromyxids likely invaded an ancestral elasmobranch prior the time of divergence of shark and batoid lineages. Our analyses did not show a clear phylogeographic pattern of Chloromyxum parasites, probably due to the cosmopolitan distribution and migratory behaviour of many elasmobranch hosts, but geographical sampling must be extended to confirm or refute this observation. This study provides a complex view on species diversity, phylogeny, evolution, host-parasite co-phylogeny, and the phylogeographic origin of Chloromyxum species from elasmobranchs. Our results highlight the importance of adding missing data from previously un- or undersampled geographical regions and host species which results in a more accurate estimate of myxozoan biodiversity and a better understanding of the evolution of this parasite group in their hosts and in the different oceans of our planet.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Citace poskytuje Crossref.org
Unraveling the mystery of a myxozoan parasite of the trout: redescription of Chloromyxum schurovi