Becoming urban: How city life shapes the social structure and genetics of ants
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
282471
CONACYT DICB
PubMed
35962743
PubMed Central
PMC9543373
DOI
10.1111/mec.16657
Knihovny.cz E-resources
- Keywords
- population genetics, social insects, urban biology,
- Publication type
- Journal Article MeSH
Cities and urban environments can do peculiar things to biodiversity that shares them with us. How cities affect their invited and uninvited inhabitants has become an increasingly important question. More than half of the world's population dwells in urban areas, and these environments will keep expanding considerably. Understanding how this relatively recent, rapid, and pervasive form of landscape modification influences the ecology and evolution of organisms that cannot escape, or may benefit from it, is an emerging field of biology. Although we are aware of how some birds, mammals or plants respond to urban environments, less is known about insects and invertebrates in general. In this issue of Molecular Ecology, Blumenfeld et al. (2022) bring new remarkable insights into how a common ant species adjusts to urban settings across the United States by changing its social structure and behaviour. Using a large-scale molecular, chemical and behavioural dataset, they document how the odorous house ant Tapinoma sessile differs in its colony organisation and dispersal strategy between rural and urban habitats. In each of the study regions and continent-wide, rural and urban colonies are genetically and chemically differentiated, suggesting that urban settings act as potent agents of selection and isolation. The novelty and importance of this study are that it documents multiple independent transitions toward the same social organisation and the apparent effect of habitat on the life history of a eusocial insect species.
Department of Zoology Faculty of Science Palacky University Olomouc Olomouc Czech Republic
Institute of Entomology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
See more in PubMed
Blumenfeld, A. J. , Eyer, P.‐A. , Helms, A. M. , Buczkowski, G. , & Vargo, E. L. (2022). Consistent signatures of urban adaptation in a native, urban invader ant Tapinoma sessile . Molecular Ecology, 31(18), 4832–4850. 10.1111/mec.16188 PubMed DOI
Dunn, R. R. , Burger, J. R. , Carlen, E. J. , Koltz, A. M. , Light, J. E. , Martin, R. A. , Munshi‐South, J. , Nichols, L. M. , Vargo, E. L. , Yitbarek, S. , Zhao, Y. , & Cibrián‐Jaramillo, A. (2022). A theory of city biogeography and the origin of urban species. Frontiers in Conservation Science, 3. 10.3389/fcosc.2022.761449 DOI
Fusco, N. A. , Carlen, E. J. , & Munshi‐South, J. (2021). Urban landscape genetics: Are biologists keeping up with the pace of urbanization? Current Landscape Ecology Reports, 6(2), 35–45. 10.1007/s40823-021-00062-3 DOI
Khimoun, A. , Doums, C. , Molet, M. , Kaufmann, B. , Peronnet, R. , Eyer, P. A. , & Mona, S. (2020). Urbanisation without isolation: The absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi . Biology Letters, 16(1), 20190741. 10.1098/rsbl.2019.0741 PubMed DOI PMC
Konorov, E. A. , Nikitin, M. A. , Mikhailov, K. V. , Lysenkov, S. N. , Belenky, M. , Chang, P. L. , Nuzhdin, S. V. , & Scobeyeva, V. A. (2017). Genomic exaptation enables Lasius Niger adaptation to urban environments. BMC Evolutionary Biology, 17(1), 39. 10.1186/s12862-016-0867-x PubMed DOI PMC
Martin, R. A. , Chick, L. D. , Garvin, M. L. , & Diamond, S. E. (2021). In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade‐offs in response to urban evolution in an acorn‐dwelling ant. Evolution, 75(4), 876–887. 10.1111/evo.14191 PubMed DOI PMC
Matos‐Maraví, P. , Clouse, R. M. , Sarnat, E. M. , Economo, E. P. , LaPolla, J. S. , Borovanska, M. , Rabeling, C. , Czekanski‐Moir, J. , Latumahina, F. , Wilson, E. O. , & Janda, M. (2018a). An ant genus‐group (Prenolepis) illuminates the biogeography and drivers of insect diversification in the Indo‐Pacific. Molecular Phylogenetics and Evolution, 123, 16–25. 10.1016/j.ympev.2018.02.007 PubMed DOI
Matos‐Maraví, P. , Matzke, N. J. , Larabee, F. J. , Clouse, R. M. , Wheeler, W. C. , Sorger, D. M. , Suarez, A. V. , & Janda, M. (2018b). Taxon cycle predictions supported by model‐based inference in Indo‐Pacific trap‐jaw ants (Hymenoptera: Formicidae: Odontomachus). Molecular Ecology, 27(20), 4090–4107. 10.1111/mec.14835 PubMed DOI
McDonnell, M. J. , & Hahs, A. K. (2015). Adaptation and adaptedness of organisms to urban environments. Annual Review of Ecology, Evolution, and Systematics, 46(1), 261–280. 10.1146/annurev-ecolsys-112414-054258 DOI
Seifert, B. , Kulmuni, J. , & Pamilo, P. (2010). Independent hybrid populations of Formica polyctena × rufa wood ants (Hymenoptera: Formicidae) abound under conditions of forest fragmentation. Evolutionary Ecology, 24(5), 1219–1237. 10.1007/s10682-010-9371-8 DOI