Combination of enrichment factor and positive matrix factorization in the estimation of potentially toxic element source distribution in agricultural soil
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35972608
DOI
10.1007/s10653-022-01348-z
PII: 10.1007/s10653-022-01348-z
Knihovny.cz E-zdroje
- Klíčová slova
- Enrichment factor-positive matrix factorization, Frýdek-Místek District, Multiple linear regression, Potentially toxic elements, Principal component analysis, Spatial distribution,
- MeSH
- hodnocení rizik MeSH
- kadmium analýza MeSH
- látky znečišťující půdu * analýza MeSH
- monitorování životního prostředí metody MeSH
- olovo analýza MeSH
- půda chemie MeSH
- těžké kovy * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- těžké kovy * MeSH
The study intended to assess the level of pollution of potential toxic elements (PTEs) at different soil depths and to evaluate the source contribution in agricultural soil. One hundred and two soil samples were collected for both topsoil (51), and the subsoil (51) and the content of PTEs (Cr, Cu, Cd, Mn, Ni, Pb, As and Zn) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The concentrations of Zn and Cd in both soil horizons indicated that the current study levels were higher than the upper continental crust (UCC), world average value (WAV), and European average values (EAV). Nonetheless, the concentration values of PTEs such as Mn and Cu for EAV, As, Cu, Mn, and Pb for UCC, and Pb for WAV were lower than the average values of the corresponding PTEs in this study. The single pollution index, enrichment factor, and ecological risk revealed that the pollution level ranged from low to high. The pollution load index, Nemerow pollution index, and risk index all revealed that pollution levels ranged from low to high. The spatial distribution confirmed that pollution levels varied between the horizons; that is, the subsoil was considered slightly more enriched than the topsoil. Principal component analysis identified the PTE source as geogenic (i.e. for Mn, Cu, Ni, Cr) and anthropogenic (i.e. for Pb, Zn, Cd, and As). PTEs were attributed to various sources using enrichment factor-positive matrix factorization (EF-PMF) and positive matrix factorization (PMF), including geogenic (e.g. rock weathering), fertilizer application, steel industry, industrial sewage irrigation, agrochemicals, and metal works. Both receptor models allotted consistent sources for the PTEs. Multiple linear regression analysis was applied to the receptor models (EF-PMF and PMF), and their efficiency was tested and assessed using root-mean-square error (RMSE), mean absolute error (MAE), and R2 accuracy indicators. The validation and accuracy assessment of the receptor models revealed that the EF-PMF receptor model output significantly reduces errors compared with the parent model PMF. Based on the marginal error levels in RMSE and MAE, 7 of the 8 PTEs (As, Cd, Cr, Cu, Ni, Mn, Pb, and Zn) analysed performed better under the EF-PMF receptor model. The EF-PMF receptor model optimizes the efficiency level in source apportionment, reducing errors in determining the proportion contribution of PTEs in each factor. The purpose of building a model is to maximize efficiency while minimizing inaccuracy. The marginal error limitation encountered in the parent model PMF was circumvented by EF-PMF. As a result, EF-PMF is feasible and useful for apparently polluted environments, whether farmland, urban land, or peri-urban land.
Zobrazit více v PubMed
Adimalla, N., Qian, H., & Wang, H. (2019). Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: An approach of spatial distribution and multivariate statistical analysis. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-7408-1 DOI
Adimalla, N., Chen, J., & Qian, H. (2020a). Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicology and Environmental Safety, 194, 110406. https://doi.org/10.1016/j.ecoenv.2020.110406 DOI
Adimalla, N., Qian, H., Nandan, M. J., & Hursthouse, A. S. (2020b). Potentially toxic elements (PTEs) pollution in surface soils in a typical urban region of south India: An application of health risk assessment and distribution pattern. Ecotoxicology and Environmental Safety, 203, 111055. https://doi.org/10.1016/j.ecoenv.2020.111055 DOI
Agyeman, P. C., Ahado, S. K., Borůvka, L., Biney, J. K. M., Sarkodie, V. Y. O., Kebonye, N. M., & Kingsley, J. (2020). Trend analysis of global usage of digital soil mapping models in the prediction of potentially toxic elements in soil/sediments: A bibliometric review. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00742-9 DOI
Antoniadis, V., & Alloway, B. J. (2002). Leaching of cadmium, nickel, and zinc down the profile of sewage sludge-treated soil. Communications in Soil Science and Plant Analysis, 33, 273–286. https://doi.org/10.1081/CSS-120002393 DOI
Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160, 83–89. https://doi.org/10.1007/s10661-008-0659-x DOI
Belon, E., Boisson, M., Deportes, I. Z., Eglin, T. K., Feix, I., Bispo, A. O., Galsomies, L., Leblond, S., & Guellier, C. R. (2012). An inventory of trace elements inputs to French agricultural soils. Science of the Total Environment, 439, 87–95. https://doi.org/10.1016/j.scitotenv.2012.09.011 DOI
Borůvka, L., Vacek, O., & Jehlička, J. (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128, 289–300. https://doi.org/10.1016/j.geoderma.2005.04.010 DOI
Boyter, M. J., Brummer, J. E., & Leininger, W. C. (2009). Growth and metal accumulation of geyer and mountain willow grown in topsoil versus amended mine tailings. Water, Air, and Soil Pollution, 198, 17–29. https://doi.org/10.1007/s11270-008-9822-9 DOI
Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75. https://doi.org/10.1016/j.chemosphere.2015.04.008 DOI
Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India - Spectroscopical approach. Spectrochimica Acta - Part a: Molecular and Biomolecular Spectroscopy, 137, 589–600. https://doi.org/10.1016/j.saa.2014.08.093 DOI
Chen, H., Teng, Y., Chen, R., Li, J., & Wang, J. (2016). Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir. Environmental Science and Pollution Research, 23, 15331–15342. https://doi.org/10.1007/s11356-016-6694-1 DOI
Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 DOI
Chen, X., & Lu, X. (2018). Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi’an city, China. Ecotoxicology and Environmental Safety, 151, 153–160. https://doi.org/10.1016/j.ecoenv.2018.01.010 DOI
Choppala, G., Bolan, N., & Park, J. H. (2013). Chromium contamination and Its risk management in complex environmental settings. Advances in agronomy (pp. 129–172). Elsevier. https://doi.org/10.1016/B978-0-12-407686-0.00002-6 DOI
Cools, N., & De Vos, B. (2016). Part X: Sampling and analysis of soil. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, 29.
czso, (2019). Characteristics of the Frýdek-Místek district CZSO in Ostrava [WWW Document]. URL https://www.czso.cz/csu/xt/charakteristika_okresu_frydek_mistek (Accessed 10.6.20).
Duan, X., Zhang, G., Rong, L., Fang, H., He, D., & Feng, D. (2015). Spatial distribution and environmental factors of catchment-scale soil heavy metal contamination in the dry-hot valley of Upper Red River in Southwestern China. CATENA, 135, 59–69. https://doi.org/10.1016/j.catena.2015.07.006 DOI
Ergin, M., Saydam, C., Baştürk, Ö., Erdem, E., & Yörük, R. (1991). Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and İzmit Bay) of the northeastern Sea of Marmara. Chemical Geology, 91, 269–285. https://doi.org/10.1016/0009-2541(91)90004-B DOI
Fei, X., Lou, Z., Xiao, R., Ren, Z., & Lv, X. (2020). Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.141293 DOI
Foo, T., Fong, S., Chee, A., Azani, M., & Tahir, N. M. (2008). Possible source and pattern distribution of heavy metals content in urban soil at kuala terengganu town center. The Malaysian Journal of Analytical Sciences., 12(2), 458–467.
Gąsiorek, M., Kowalska, J., Mazurek, R., & Pająk, M. (2017). Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the planty park in Krakow (Poland). Chemosphere, 179, 148–158. https://doi.org/10.1016/j.chemosphere.2017.03.106 DOI
Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016). Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Science of the Total Environment, 566, 1552–1567. DOI
Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., & Luo, H. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197. DOI
Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8 DOI
Herndon, E. M., Jin, L., & Brantley, S. L. (2011). Soils reveal widespread manganese enrichment from industrial inputs. Environmental Science and Technology, 45, 241–247. https://doi.org/10.1021/es102001w DOI
Hossain Bhuiyan, M. A., Chandra Karmaker, S., Bodrud-Doza, M., Rakib, M. A., & Saha, B. B. (2021). Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM. PMF and GIS Methods. Chemosphere, 263, 128339. https://doi.org/10.1016/j.chemosphere.2020.128339 DOI
Hou, D., He, J., Lü, C., Ren, L., Fan, Q., Wang, J., & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicology and Environmental Safety, 93, 135–144. https://doi.org/10.1016/j.ecoenv.2013.03.012 DOI
Hu, J., Lin, B., Yuan, M., Lao, Z., Wu, K., Zeng, Y., Liang, Z., Li, H., Li, Y., Zhu, D., Liu, J., & Fan, H. (2019). Trace metal pollution and ecological risk assessment in agricultural soil in dexing Pb/Zn mining area, China. Environmental Geochemistry and Health, 41, 967–980. https://doi.org/10.1007/s10653-018-0193-x DOI
Hu, Y., & Cheng, H. (2013). Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environmental Science and Technology, 47, 3752–3760. https://doi.org/10.1021/es304310k DOI
Huang, H., Lin, C., Yu, R., Yan, Y., Hu, G., & Li, H. (2019). Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China. RSC Advances, 9, 14736–14744. https://doi.org/10.1039/c9ra02333j DOI
Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072 DOI
Huang, Y., Li, T., Wu, C., He, Z., Japenga, J., Deng, M., & Yang, X. (2015). An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials, 299, 540–549. https://doi.org/10.1016/j.jhazmat.2015.07.041 DOI
Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC Press. https://doi.org/10.1201/b10158 DOI
Kooistra, L., Wanders, J., Epema, G. F., Leuven, R. S. E. W., Wehrens, R., & Buydens, L. M. C. (2003). The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Analytica Chimica Acta, 484, 189–200. https://doi.org/10.1016/S0003-2670(03)00331-3 DOI
Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. DOI
Kozák J., Němeček J., Borůvka L., Kodešová R., Janků J., Jacko J., & Hladík J. (2010). Soil Atlas of the Czech Republic. Prague: CULS.
Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881. https://doi.org/10.1021/es0206184 DOI
Lee, D. H., Kim, J. H., Mendoza, J. A., Lee, C. H., & Kang, J. H. (2016). Characterization and source identification of pollutants in runoff from a mixed land use watershed using ordination analyses. Environmental Science and Pollution Research, 23, 9774–9790. https://doi.org/10.1007/s11356-016-6155-x DOI
Li, J., He, M., Han, W., & Gu, Y. (2009). Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. Journal of Hazardous Materials, 164, 976–981. https://doi.org/10.1016/j.jhazmat.2008.08.112 DOI
Li, L., Lu, J., Wang, S., Ma, Y., Wei, Q., Li, X., Cong, R., & Ren, T. (2016). Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Industrial Crops and Products, 91, 194–204. DOI
Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2013.08.090 DOI
Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., Li, X., He, X., & Fang, Y. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057 DOI
Liang, J., Hua, S., Zeng, G., Yuan, Y., Lai, X., Li, X., Li, F., Wu, H., Huang, L., & Yu, X. (2015). Application of weight method based on canonical correspondence analysis for assessment of anatidae habitat suitability: A case study in east dongting lake, middle China. Ecological Engineering, 77, 119–126. https://doi.org/10.1016/j.ecoleng.2015.01.016 DOI
Liu, J., Liu, Y. J., Liu, Y., Liu, Z., & Zhang, A. N. (2018). Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicology and Environmental Safety, 164, 261–269. https://doi.org/10.1016/j.ecoenv.2018.08.030 DOI
Liu, X., Qiujin Song, Y., Tang, W. L., Jianming, X., Jianjun, W., Wang, F., & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Science of the Total Environment, 463–464, 530–540. https://doi.org/10.1016/j.scitotenv.2013.06.064 DOI
Liu, Y., Wang, H., Li, X., & Li, J. (2015). Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere, 25, 901–909. https://doi.org/10.1016/S1002-0160(15)30070-9 DOI
Liu, Y. R., He, Z. Y., Yang, Z. M., Sun, G. X., & He, J. Z. (2016). Variability of heavy metal content in soils of typical Tibetan grasslands. RSC Advances, 6, 105398–105405. https://doi.org/10.1039/c6ra23868h DOI
Lü, J. S., & He, H. C. (2018). Identifying the origins and spatial distributions of heavy metals in the soils of the jiangsu coast. Huanjing Kexue/environmental Science, 39, 2853–2864. https://doi.org/10.13227/j.hjkx.201707219 DOI
Madrid, L., Díaz-Barrientos, E., & Madrid, F. (2002). Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 49, 1301–1308. https://doi.org/10.1016/S0045-6535(02)00530-1 DOI
Mamat, Z., Yimit, H., Eziz, A., & Ablimit, A. (2014). Oasis land-use change and its effects on the eco-environment in Yanqi Basin, Xinjiang, China. Environmental Monitoring and Assessment, 186, 335–348. https://doi.org/10.1007/s10661-013-3377-y DOI
Mazhari, S. A., Bajestani, A. R. M., Hatefi, F., Aliabadi, K., & Haghighi, F. (2018). Soil geochemistry as a tool for the origin investigation and environmental evaluation of urban parks in Mashhad city. NE of Iran. Environmental Earth Sciences. https://doi.org/10.1007/s12665-018-7684-z DOI
Milićević, T., Relić, D., Škrivanj, S., Tešić, Ž, & Popović, A. (2017). Assessment of major and trace element bioavailability in vineyard soil applying different single extraction procedures and pseudototal digestion. Chemosphere, 171, 284–293. https://doi.org/10.1016/j.chemosphere.2016.12.090 DOI
Nezhad, M. T. K., Tabatabaii, S. M., & Gholami, A. (2015). Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran. Journal of Geochemical Exploration, 152, 91–109. DOI
Norris, G., Duvall, R., Brown, S., Bai, S. (2014). EPA Positive Matrix Factorization (PMF) 5.0-Fundamentals and User Guide Prepared for the US Environmental Protection Agency Office of Research and Development, Washington.
Paatero, P. (1999). The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8, 854–888. https://doi.org/10.1080/10618600.1999.10474853 DOI
Paatero, P., & Hopke, P. K. (2009). Rotational tools for factor analytic models. Journal of Chemometrics, 23, 91–100. https://doi.org/10.1002/cem.1197 DOI
Paatero, P., Hopke, P. K., Song, X. H., & Ramadan, Z. (2002). Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems, 60, 253–264. https://doi.org/10.1016/S0169-7439(01)00200-3 DOI
Pan, L. B., Ma, J., Wang, X. L., & Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere, 148, 248–254. https://doi.org/10.1016/j.chemosphere.2015.12.049 DOI
Parveen, N., Ghaffar, A., Shirazi, S. A., & Bhalli, M. N. (2012). A GIS based assessment of heavy metals contamination in surface soil of urban parks: a case study of Faisalabad City-Pakistan. Journal of Geography & Natural Disasters, 02, 1–5. https://doi.org/10.4172/2167-0587.1000105 DOI
Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. DOI
Rastegari Mehr, M., Keshavarzi, B., Moore, F., Sharifi, R., Lahijanzadeh, A., & Kermani, M. (2017). Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province. Iran. Journal of African Earth Sciences, 132, 16–26. https://doi.org/10.1016/j.jafrearsci.2017.04.026 DOI
Rodríguez Martín, J. A., Ramos-Miras, J. J., Boluda, R., & Gil, C. (2013). Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma, 200–201, 180–188. https://doi.org/10.1016/j.geoderma.2013.02.014 DOI
Ruiz-Fernández, A. C., Sanchez-Cabeza, J. A., Pérez-Bernal, L. H., & Gracia, A. (2019). Spatial and temporal distribution of heavy metal concentrations and enrichment in the southern Gulf of Mexico. Science of the Total Environment, 651, 3174–3186. https://doi.org/10.1016/j.scitotenv.2018.10.109 DOI
Salim, I., Sajjad, R. U., Paule-Mercado, M. C., Memon, S. A., Lee, B. Y., Sukhbaatar, C., & Lee, C. H. (2019). Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and subwatershed areas with mixed land cover in South Korea. Science of the Total Environment, 663, 764–775. https://doi.org/10.1016/j.scitotenv.2019.01.377 DOI
Shiva Kumar, D., & Srikantaswamy, S. (2014). Factors affecting on mobility of heavy metals in soil environment. International Journal for Scientific Research & Development., 2, 201–203.
Singh, B., Sihag, P., & Singh, K. (2017). Modelling of impact of water quality on infiltration rate of soil by random forest regression. Modeling Earth Systems and Environment, 3, 999–1004. https://doi.org/10.1007/s40808-017-0347-3 DOI
Slavich, P. G., Sinclair, K., Morris, S. G., Kimber, S. W. L., Downie, A., & Van Zwieten, L. (2013). Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant and Soil, 366, 213–227. https://doi.org/10.1007/s11104-012-1412-3 DOI
Song, Y., Dai, W., Shao, M., Liu, Y., Lu, S., Kuster, W., & Goldan, P. (2008). Comparison of receptor models for source apportionment of volatile organic compounds in Beijing China. Environmental Pollution, 156, 174–183. https://doi.org/10.1016/j.envpol.2007.12.014 DOI
Stanimirova, I., Tauler, R., & Walczak, B. (2011). A comparison of positive matrix factorization and the weighted multivariate curve resolution method. application to environmental data. Environmental Science and Technology, 45, 10102–10110. https://doi.org/10.1021/es201024m DOI
Sawut, R., Kasim, N., Maihemuti, B., Hu, L., Abliz, A., Abdujappar, A., & Kurban, M. (2018). Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Science of the Total Environment, 642, 864–878. https://doi.org/10.1016/j.scitotenv.2018.06.034 DOI
Shukla, K., Kumar, P., Mann, G. S., & Khare, M. (2020). Mapping spatial distribution of particulate matter using kriging and inverse distance weighting at supersites of megacity Delhi. Sustainable Cities and Society, 54, 101997. https://doi.org/10.1016/j.scs.2019.101997 DOI
Song, H., Hu, K., An, Y., Chen, C., & Li, G. (2018). Spatial distribution and source apportionment of the heavy metals in the agricultural soil in a regional scale. Journal of Soils and Sediments, 18, 852–862. https://doi.org/10.1007/s11368-017-1795-0 DOI
Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92, 517–523. https://doi.org/10.1016/j.chemosphere.2013.02.063 DOI
Sun, G. X., Wang, X. J., & Hu, Q. H. (2011). Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China. Environmental Pollution, 159, 3406–3410. https://doi.org/10.1016/j.envpol.2011.08.037 DOI
Sutherland, R. A., Tolosa, C. A., Tack, F. M. G., & Verloo, M. G. (2000). Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas. Archives of Environmental Contamination and Toxicology, 38, 428–438. https://doi.org/10.1007/s002440010057 DOI
Tang, Z., Chai, M., Cheng, J., Jin, J., Yang, Y., Nie, Z., Huang, Q., & Li, Y. (2017). Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicology and Environmental Safety, 138, 83–91. https://doi.org/10.1016/j.ecoenv.2016.11.003 DOI
Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575. https://doi.org/10.1007/BF02414780 DOI
Vacek, O., Vašát, R., & Borůvka, L. (2020). Quantifying the pedodiversity-elevation relations. Geoderma, 373, 114441. DOI
Wang, M., Bai, Y., Chen, W., Markert, B., Peng, C., & Ouyang, Z. (2012). A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China. Environmental Pollution, 161, 235–242. https://doi.org/10.1016/j.envpol.2011.09.030 DOI
Wang, Y. B., Gou, X., Su, Y. B., & G.W. (2006). Wang: Risk assessment of heavy metals in soils and - Google Scholar [WWW Document]. Journal of Environmrental Science., 18(6), 1124–1134.
Weather Spark, (2016). Average Weather in Frýdek-Místek, Czechia, Year Round - Weather Spark [WWW Document]. URL https://weatherspark.com/y/83671/Average-Weather-in-Frýdek-Místek-Czechia-Year-Round (Accessed 9.14.20).
Wu, J., Margenot, A. J., Wei, X., Fan, M., Zhang, H., Best, J. L., Wu, P., Chen, F., & Gao, C. (2020). Source apportionment of soil heavy metals in fluvial islands, Anhui section of the lower Yangtze River: Comparison of APCS–MLR and PMF. Journal of Soils and Sediments, 20, 3380–3393. https://doi.org/10.1007/s11368-020-02639-7 DOI
Xue, J. L., Zhi, Y. Y., Yang, L. P., Shi, J. C., Zeng, L. Z., & Wu, L. S. (2014). Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China). Environmental Science and Pollution Research, 21, 7698–7707. https://doi.org/10.1007/s11356-014-2726-x DOI
Yang, B., Zhou, L., Xue, N., Li, F., Li, Y., Vogt, R. D., Cong, X., Yan, Y., & Liu, B. (2013). Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Science of the Total Environment, 443, 31–39. https://doi.org/10.1016/j.scitotenv.2012.10.094 DOI
Yang, Y., Christakos, G., Guo, M., Xiao, L., & Huang, W. (2017). Space-time quantitative source apportionment of soil heavy metal concentration increments. Environmental Pollution, 223, 560–566. https://doi.org/10.1016/j.envpol.2017.01.058 DOI
Yang, Z., Lu, W., Long, Y., Bao, X., & Yang, Q. (2011). Assessment of heavy metals contamination in urban topsoil from Changchun City, China. Journal of Geochemical Exploration, 108, 27–38. https://doi.org/10.1016/j.gexplo.2010.09.006 DOI
Yeung, Z. L. L., Kwok, R. C. W., & Yu, K. N. (2003). Determination of multielement profiles of street dust using energy dispersive X-ray fluorescence (EDXRF). Applied Radiation and Isotopes, 58, 339–346. https://doi.org/10.1016/S0969-8043(02)00351-2 DOI
Yuanan, H., He, K., Sun, Z., Chen, G., & Cheng, H. (2020). Quantitative source apportionment of heavy metal (loid) s in the agricultural soils of an industrializing region and associated model uncertainty. Journal of Hazardous Materials, 391, 122244. DOI
Zhang, X., Zhong, T., Liu, L., Zhang, X., Cheng, M., Li, X., & Jin, J. (2016). Chromium occurrences in arable soil and its influence on food production in China. Environmental Earth Sciences, 75(3), 1–8. DOI
Zhang, H., Li, H., Yu, H., & Cheng, S. (2020). Water quality assessment and pollution source apportionment using multistatistic and APCS-MLR modelling techniques in Min River Basin China. Environmental Science and Pollution Research, 27, 41987–42000. https://doi.org/10.1007/s11356-020-10219-y DOI
Zhang, J., Li, R., Zhang, X., Bai, Y., Cao, P., & Hua, P. (2019). Vehicular contribution of PAHs in size dependent road dust: A source apportionment by PCA-MLR, PMF, and Unmix receptor models. Science of the Total Environment, 649, 1314–1322. https://doi.org/10.1016/j.scitotenv.2018.08.410 DOI
Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China - Weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070. https://doi.org/10.1006/ecss.2001.0879 DOI
Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z., & McGrath, S. P. (2015). Soil contamination in China: Current status and mitigation strategies. Environmental Science and Technology. https://doi.org/10.1021/es5047099 DOI
Zhao, S., Qiu, S., & He, P. (2018). Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China. Journal of Plant Nutrition, 41, 1970–1979. https://doi.org/10.1080/01904167.2018.1485158 DOI
Zheng, Y., Shen, D., Wu, S., Han, Y., Li, S., Tang, F., Ni, Z., Mo, R., & Liu, Y. (2018). Uptake effects of toxic heavy metals from growth soils into jujube and persimmon of China. Environmental Science and Pollution Research, 25, 31593–31602. https://doi.org/10.1007/s11356-018-2959-1 DOI
Zhu, G., Guo, Q., Xiao, H., Chen, T., & Yang, J. (2017). Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory. Environmental Science and Pollution Research, 24, 14877–14888. https://doi.org/10.1007/s11356-017-9055-9 DOI
Zhu, J. J., Cui, B. S., Yang, Z. F., Dong, S. K., & Yao, H. R. (2006). Spatial distribution and variability of heavy metals contents in the topsoil along roadside in the Longitudinal Range-Gorge Region in Yunnan Province. Acta Ecologica Sinica, 26, 146–153.