Compression complexity with ordinal patterns for robust causal inference in irregularly sampled time series
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35986037
PubMed Central
PMC9391387
DOI
10.1038/s41598-022-18288-4
PII: 10.1038/s41598-022-18288-4
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- informační teorie MeSH
- kauzalita MeSH
- komprese dat * MeSH
- počítačová simulace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Distinguishing cause from effect is a scientific challenge resisting solutions from mathematics, statistics, information theory and computer science. Compression-Complexity Causality (CCC) is a recently proposed interventional measure of causality, inspired by Wiener-Granger's idea. It estimates causality based on change in dynamical compression-complexity (or compressibility) of the effect variable, given the cause variable. CCC works with minimal assumptions on given data and is robust to irregular-sampling, missing-data and finite-length effects. However, it only works for one-dimensional time series. We propose an ordinal pattern symbolization scheme to encode multidimensional patterns into one-dimensional symbolic sequences, and thus introduce the Permutation CCC (PCCC). We demonstrate that PCCC retains all advantages of the original CCC and can be applied to data from multidimensional systems with potentially unobserved variables which can be reconstructed using the embedding theorem. PCCC is tested on numerical simulations and applied to paleoclimate data characterized by irregular and uncertain sampling and limited numbers of samples.
Zobrazit více v PubMed
Pearl J, Mackenzie D. The Book of Why: The New Science of Cause and Effect. Basic Books; 2018.
Kathpalia A, Nagaraj N. Measuring causality. Resonance. 2021;26:191. doi: 10.1007/s12045-021-1119-y. DOI
Wiener N. The theory of prediction. Mod. Math. Eng. 1956;1:125–139.
Granger C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37:424–438. doi: 10.2307/1912791. DOI
Geweke J. Inference and causality in economic time series models. Handb. Econom. 1984;2:1101–1144.
Hiemstra C, Jones JD. Testing for linear and nonlinear granger causality in the stock price-volume relation. J. Financ. 1994;49:1639–1664.
Chiou-Wei SZ, Chen C-F, Zhu Z. Economic growth and energy consumption revisited: Evidence from linear and nonlinear granger causality. Energy Econ. 2008;30:3063–3076. doi: 10.1016/j.eneco.2008.02.002. DOI
Seth AK, Barrett AB, Barnett L. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 2015;35:3293–3297. doi: 10.1523/JNEUROSCI.4399-14.2015. PubMed DOI PMC
Mosedale TJ, Stephenson DB, Collins M, Mills TC. Granger causality of coupled climate processes: Ocean feedback on the north Atlantic oscillation. J. Clim. 2006;19:1182–1194. doi: 10.1175/JCLI3653.1. DOI
Tirabassi G, Masoller C, Barreiro M. A study of the air–sea interaction in the south Atlantic convergence zone through granger causality. Int. J. Climatol. 2015;35:3440–3453. doi: 10.1002/joc.4218. DOI
Runge J, et al. Inferring causation from time series in earth system sciences. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-10105-3. PubMed DOI PMC
Bell D, Kay J, Malley J. A non-parametric approach to non-linear causality testing. Econ. Lett. 1996;51:7–18. doi: 10.1016/0165-1765(95)00791-1. DOI
Chen Y, Rangarajan G, Feng J, Ding M. Analyzing multiple nonlinear time series with extended granger causality. Phys. Lett. A. 2004;324:26–35. doi: 10.1016/j.physleta.2004.02.032. DOI
Schiff SJ, So P, Chang T, Burke RE, Sauer T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E. 1996;54:6708. doi: 10.1103/PhysRevE.54.6708. PubMed DOI
Le Van Quyen, M., Martinerie, J., Adam, C. & Varela, F. J. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy. Physica D Nonlinear Phenomena127, 250–266 (1999).
Marinazzo D, Pellicoro M, Stramaglia S. Kernel method for nonlinear granger causality. Phys. Rev. Lett. 2008;100:144103. doi: 10.1103/PhysRevLett.100.144103. PubMed DOI
Baccalá LA, Sameshima K. Partial directed coherence: A new concept in neural structure determination. Biol. Cybern. 2001;84:463–474. doi: 10.1007/PL00007990. PubMed DOI
Kamiński M, Ding M, Truccolo WA, Bressler SL. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 2001;85:145–157. doi: 10.1007/s004220000235. PubMed DOI
Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S. Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J. Neurosci. Methods. 2003;125:195–207. doi: 10.1016/S0165-0270(03)00052-9. PubMed DOI
Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000;85:461–464. doi: 10.1103/PhysRevLett.85.461. PubMed DOI
Paluš M, Komárek V, Hrnčíř Z, Štěrbová K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E. 2001;63:046211. doi: 10.1103/PhysRevE.63.046211. PubMed DOI
Paluš M, Vejmelka M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E. 2007;75:056211. doi: 10.1103/PhysRevE.75.056211. PubMed DOI
Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy: A model-free measure of effective connectivity for the neurosciences. J. Comput. Neurosci. 2011;30:45–67. doi: 10.1007/s10827-010-0262-3. PubMed DOI PMC
Bauer M, Cox JW, Caveness MH, Downs JJ, Thornhill NF. Finding the direction of disturbance propagation in a chemical process using transfer entropy. IEEE Trans. Control Syst. Technol. 2007;15:12–21. doi: 10.1109/TCST.2006.883234. DOI
Dimpfl T, Peter FJ. Using transfer entropy to measure information flows between financial markets. Stud. Nonlinear Dyn. Econom. 2013;17:85–102.
Paluš M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 2014;112:078702. doi: 10.1103/PhysRevLett.112.078702. PubMed DOI
Jajcay N, Kravtsov S, Sugihara G, Tsonis AA, Paluš M. Synchronization and causality across time scales in el niño southern oscillation. NPJ Climate Atmos. Sci. 2018;1:1–8. doi: 10.1038/s41612-017-0007-3. DOI
Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980, 366–381 (Springer, 1981).
Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 1986;33:1134. doi: 10.1103/PhysRevA.33.1134. PubMed DOI
Wibral M, et al. Measuring information-transfer delays. PloS one. 2013;8:e55809. doi: 10.1371/journal.pone.0055809. PubMed DOI PMC
Sugihara G, May R, Ye H, Hsieh C, Deyle E. Detecting causality in complex ecosystems. Science. 2012;338:496–500. doi: 10.1126/science.1227079. PubMed DOI
Harnack D, Laminski E, Schünemann M, Pawelzik KR. Topological causality in dynamical systems. Phys. Rev. Lett. 2017;119:098301. doi: 10.1103/PhysRevLett.119.098301. PubMed DOI
Krakovská A, Hanzely F. Testing for causality in reconstructed state spaces by an optimized mixed prediction method. Phys. Rev. E. 2016;94:052203. doi: 10.1103/PhysRevE.94.052203. PubMed DOI
Barrios A, Trincado G, Garreaud R. Alternative approaches for estimating missing climate data: Application to monthly precipitation records in south-central Chile. For. Ecosyst. 2018;5:1–10. doi: 10.1186/s40663-018-0147-x. DOI
Anderson CI, Gough WA. Accounting for missing data in monthly temperature series: Testing rule-of-thumb omission of months with missing values. Int. J. Climatol. 2018;38:4990–5002. doi: 10.1002/joc.5801. DOI
DiCesare, G. Imputation, estimation and missing data in finance. Ph.D. Thesis, University of Waterloo (2006).
John C, Ekpenyong EJ, Nworu CC. Imputation of missing values in economic and financial time series data using five principal component analysis approaches. CBN J. Appl. Stat. (JAS) 2019;10:3.
Gyimah S. Missing data in quantitative social research. PSC Discuss. Papers Ser. 2001;15:1.
Kulp C, Tracy E. The application of the transfer entropy to Gappy time series. Phys. Lett. A. 2009;373:1261–1267. doi: 10.1016/j.physleta.2009.02.009. DOI
Smirnov D, Bezruchko B. Spurious causalities due to low temporal resolution: Towards detection of bidirectional coupling from time series. Europhys. Lett. 2012;100:10005. doi: 10.1209/0295-5075/100/10005. DOI
Kathpalia A, Nagaraj N. Data based intervention approach for complexity-causality measure. PeerJ Comput. Sci. 2019;e196:5. PubMed PMC
Kathpalia, A. Theoretical and Experimental Investigations into Causality, its Measures and Applications. Ph.D. Thesis, NIAS (2021).
Nagaraj N, Balasubramanian K. Dynamical complexity of short and noisy time series. Eur. Phys. J. Special Top. 2017;226:1–14. doi: 10.1140/epjst/e2017-02677-8. DOI
Staniek M, Lehnertz K. Symbolic transfer entropy. Phys. Rev. Lett. 2008;100:158101. doi: 10.1103/PhysRevLett.100.158101. PubMed DOI
Staniek M, Lehnertz K. Symbolic transfer entropy: Inferring directionality in biosignals. Biomed. Tech. 2009;54:323–328. doi: 10.1515/BMT.2009.040. PubMed DOI
Kugiumtzis D. Partial transfer entropy on rank vectors. Eur. Phys. J. Special Top. 2013;222:401–420. doi: 10.1140/epjst/e2013-01849-4. DOI
Papana A, Kyrtsou C, Kugiumtzis D, Diks C. Simulation study of direct causality measures in multivariate time series. Entropy. 2013;15:2635–2661. doi: 10.3390/e15072635. DOI
Li X, Ouyang G. Estimating coupling direction between neuronal populations with permutation conditional mutual information. Neuroimage. 2010;52:497–507. doi: 10.1016/j.neuroimage.2010.05.003. PubMed DOI
Wen D, et al. Estimating coupling strength between multivariate neural series with multivariate permutation conditional mutual information. Neural Netw. 2019;110:159–169. doi: 10.1016/j.neunet.2018.11.006. PubMed DOI
Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002;88:174102. doi: 10.1103/PhysRevLett.88.174102. PubMed DOI
Fadlallah B, Chen B, Keil A, Principe J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E. 2013;87:022911. doi: 10.1103/PhysRevE.87.022911. PubMed DOI
Amigó, J. Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That (Springer Science & Business Media, 2010).
Zanin M, Zunino L, Rosso OA, Papo D. Permutation entropy and its main biomedical and econophysics applications: A review. Entropy. 2012;14:1553–1577. doi: 10.3390/e14081553. DOI
Keller K, Unakafov AM, Unakafova VA. Ordinal patterns, entropy, and EEG. Entropy. 2014;16:6212–6239. doi: 10.3390/e16126212. DOI
Zanin M, Olivares F. Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series. Commun. Phys. 2021;4:1–14. doi: 10.1038/s42005-021-00696-z. DOI
McCullough M, Small M, Stemler T, Iu HH-C. Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 2015;25:053101. doi: 10.1063/1.4919075. PubMed DOI
Bandt C, Keller G, Pompe B. Entropy of interval maps via permutations. Nonlinearity. 2002;15:1595. doi: 10.1088/0951-7715/15/5/312. DOI
Amigó JM, Kennel MB, Kocarev L. The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems. Physica D. 2005;210:77–95. doi: 10.1016/j.physd.2005.07.006. DOI
Solomon S, Manning M, Marquis M, Qin D, et al. Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press; 2007.
Press WH, Flannery BP, Teukolsky SA, Vetterling WT, Kramer PB. Numerical recipes: The art of scientific computing. Phys. Today. 1987;40:120. doi: 10.1063/1.2820230. DOI
Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD. Testing for nonlinearity in time series: The method of surrogate data. Physica D. 1992;58:77–94. doi: 10.1016/0167-2789(92)90102-S. DOI
Mills BJ, et al. Modelling the long-term carbon cycle, atmospheric co2, and earth surface temperature from late neoproterozoic to present day. Gondwana Res. 2019;67:172–186. doi: 10.1016/j.gr.2018.12.001. DOI
Wong TE, Cui Y, Royer DL, Keller K. A tighter constraint on earth-system sensitivity from long-term temperature and carbon-cycle observations. Nat. Commun. 2021;12:1–8. doi: 10.1038/s41467-020-20314-w. PubMed DOI PMC
Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys.54, 162–219 (2016).
Lüthi D, et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature. 2008;453:379–382. doi: 10.1038/nature06949. PubMed DOI
Bereiter B, et al. Revision of the Epica dome c co2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 2015;42:542–549. doi: 10.1002/2014GL061957. DOI
Loulergue L, et al. Orbital and millennial-scale features of atmospheric ch 4 over the past 800,000 years. Nature. 2008;453:383–386. doi: 10.1038/nature06950. PubMed DOI
Bazin L, et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (aicc2012): 120–800 ka. Climate Past. 2013;9:1715–1731. doi: 10.5194/cp-9-1715-2013. DOI
Elderfield H, et al. Evolution of ocean temperature and ice volume through the mid-pleistocene climate transition. Science. 2012;337:704–709. doi: 10.1126/science.1221294. PubMed DOI
Lawrimore JH, et al. An overview of the global historical climatology network monthly mean temperature data set, version 3. J. Geophys. Res. Atmos. 2011 doi: 10.1029/2011JD016187. DOI
Li J, et al. Interdecadal modulation of el niño amplitude during the past millennium. Nat. Clim. Chang. 2011;1:114–118. doi: 10.1038/nclimate1086. DOI
Shi F, Li J, Wilson RJ. A tree-ring reconstruction of the south Asian summer monsoon index over the past millennium. Sci. Rep. 2014;4:1–8. doi: 10.1038/srep05230. PubMed DOI PMC
Rayner N, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003 doi: 10.1029/2002JD002670. DOI
Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H. Reconstruction of monthly nao and eu indices back to ad 1675. Geophys. Res. Lett. 1999;26:2745–2748. doi: 10.1029/1999GL900576. DOI
Luterbacher J, et al. Extending north Atlantic oscillation reconstructions back to 1500. Atmos. Sci. Lett. 2001;2:114–124. doi: 10.1006/asle.2001.0044. DOI
Trenberth KE, Paolino DA., Jr The northern hemisphere sea-level pressure data set: Trends, errors and discontinuities. Mon. Weather Rev. 1980;108:855–872. doi: 10.1175/1520-0493(1980)108<0855:TNHSLP>2.0.CO;2. DOI
Dobrovolnỳ P, et al. Monthly, seasonal and annual temperature reconstructions for central Europe derived from documentary evidence and instrumental records since ad 1500. Clim. Change. 2010;101:69–107. doi: 10.1007/s10584-009-9724-x. DOI
Barnston AG, Livezey RE. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987;115:1083–1126. doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2. DOI
Chen WY, Van den Dool H. Sensitivity of teleconnection patterns to the sign of their primary action center. Mon. Weather Rev. 2003;131:2885–2899. doi: 10.1175/1520-0493(2003)131<2885:SOTPTT>2.0.CO;2. DOI
Van den Dool H, Saha S, Johansson A. Empirical orthogonal teleconnections. J. Clim. 2000;13:1421–1435. doi: 10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2. DOI
Klein Tank A, et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int. J. Climatol. J. R. Meteorol. Soc. 2002;22:1441–1453. doi: 10.1002/joc.773. DOI
Politis DN, Romano JP. The stationary bootstrap. J. Am. Stat. Assoc. 1994;89:1303–1313. doi: 10.1080/01621459.1994.10476870. DOI
Foote, E. Art. xxxi.–circumstances affecting the heat of the sun’s rays. American Journal of Science and Arts (1820-1879)22, 382 (1856).
Arrhenius, S. Xxxi. on the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science41, 237–276 (1896).
Kodra E, Chatterjee S, Ganguly AR. Exploring granger causality between global average observed time series of carbon dioxide and temperature. Theoret. Appl. Climatol. 2011;104:325–335. doi: 10.1007/s00704-010-0342-3. DOI
Attanasio A. Testing for linear granger causality from natural/anthropogenic forcings to global temperature anomalies. Theoret. Appl. Climatol. 2012;110:281–289. doi: 10.1007/s00704-012-0634-x. DOI
Stern DI, Kaufmann RK. Anthropogenic and natural causes of climate change. Clim. Change. 2014;122:257–269. doi: 10.1007/s10584-013-1007-x. DOI
Kang J, Larsson R. What is the link between temperature and carbon dioxide levels? A granger causality analysis based on ice core data. Theoret. Appl. Climatol. 2014;116:537–548. doi: 10.1007/s00704-013-0960-7. DOI
Triacca U. On the use of granger causality to investigate the human influence on climate. Theoret. Appl. Climatol. 2001;69:137–138. doi: 10.1007/s007040170019. DOI
Triacca U. Is granger causality analysis appropriate to investigate the relationship between atmospheric concentration of carbon dioxide and global surface air temperature? Theoret. Appl. Climatol. 2005;81:133–135. doi: 10.1007/s00704-004-0112-1. DOI
Stips A, Macias D, Coughlan C, Garcia-Gorriz E, San Liang X. On the causal structure between co2 and global temperature. Sci. Rep. 2016;6:1–9. doi: 10.1038/srep21691. PubMed DOI PMC
Goulet Coulombe P, Göbel M. On spurious causality, co2, and global temperature. Econometrics. 2021;9:33. doi: 10.3390/econometrics9030033. DOI
Van Nes EH, et al. Causal feedbacks in climate change. Nat. Clim. Chang. 2015;5:445–448. doi: 10.1038/nclimate2568. DOI
Koutsoyiannis D, Kundzewicz ZW. Atmospheric temperature and co2: Hen-or-egg causality? Sci. 2020;2:83. doi: 10.3390/sci2040083. DOI
Mønster D, Fusaroli R, Tylén K, Roepstorff A, Sherson JF. Causal inference from noisy time-series data—Testing the convergent cross-mapping algorithm in the presence of noise and external influence. Futur. Gener. Comput. Syst. 2017;73:52–62. doi: 10.1016/j.future.2016.12.009. DOI
Schiecke, K., Pester, B., Feucht, M., Leistritz, L. & Witte, H. Convergent cross mapping: Basic concept, influence of estimation parameters and practical application. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 7418–7421 (IEEE, 2015). PubMed
Janse RJ, et al. Conducting correlation analysis: Important limitations and pitfalls. Clin. Kidney J. 2021;14:2337. doi: 10.1093/ckj/sfab085. PubMed DOI PMC
Brook EJ, Sowers T, Orchardo J. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science. 1996;273:1087–1091. doi: 10.1126/science.273.5278.1087. PubMed DOI
Thirumalai K, Clemens SC, Partin JW. Methane, monsoons, and modulation of millennial-scale climate. Geophys. Res. Lett. 2020;47:e2020GL087613. doi: 10.1029/2020GL087613. DOI
Kripalani RH, Kulkarni A. Rainfall variability over south-east Asia-connections with Indian monsoon and enso extremes: New perspectives. Int. J. Climatol. J. R. Meteorol. Soc. 1997;17:1155–1168. doi: 10.1002/(SICI)1097-0088(199709)17:11<1155::AID-JOC188>3.0.CO;2-B. DOI
Kumar KK, Rajagopalan B, Cane MA. On the weakening relationship between the Indian monsoon and enso. Science. 1999;284:2156–2159. doi: 10.1126/science.284.5423.2156. PubMed DOI
Krishnamurthy V, Goswami BN. Indian monsoon-enso relationship on interdecadal timescale. J. Clim. 2000;13:579–595. doi: 10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2. DOI
Sarkar S, Singh RP, Kafatos M. Further evidences for the weakening relationship of Indian rainfall and enso over India. Geophys. Res. Lett. 2004 doi: 10.1029/2004GL020259. DOI
Maraun D, Kurths J. Epochs of phase coherence between el nino/southern oscillation and Indian monsoon. Geophys. Res. Lett. 2005 doi: 10.1029/2005GL023225. DOI
Zubair L, Ropelewski CF. The strengthening relationship between ENSO and northeast monsoon rainfall over Sri Lanka and southern India. J. Clim. 2006;19:1567–1575. doi: 10.1175/JCLI3670.1. DOI
Mokhov II, et al. Alternating mutual influence of el-niño/southern oscillation and Indian monsoon. Geophys. Res. Lett. 2011 doi: 10.1029/2010GL045932. DOI
Mokhov I, Smirnov D, Nakonechny P, Kozlenko S, Kurths J. Relationship between el-nino/southern oscillation and the Indian monsoon. Izv. Atmos. Ocean. Phys. 2012;48:47–56. doi: 10.1134/S0001433812010082. DOI
Le T, Ha K-J, Bae D-H, Kim S-H. Causal effects of Indian ocean dipole on el niño-southern oscillation during 1950–2014 based on high-resolution models and reanalysis data. Environ. Res. Lett. 2020;15:1040b6. doi: 10.1088/1748-9326/abb96d. DOI
Wanner H, et al. North Atlantic oscillation-concepts and studies. Surv. Geophys. 2001;22:321–381. doi: 10.1023/A:1014217317898. DOI
Hurrell JW, Deser C. North Atlantic climate variability: The role of the north Atlantic oscillation. J. Mar. Syst. 2010;79:231–244. doi: 10.1016/j.jmarsys.2009.11.002. DOI
Deser C, Hurrell JW, Phillips AS. The role of the north Atlantic oscillation in European climate projections. Clim. Dyn. 2017;49:3141–3157. doi: 10.1007/s00382-016-3502-z. DOI
Wang W, Anderson BT, Kaufmann RK, Myneni RB. The relation between the north Atlantic oscillation and SSTS in the north Atlantic basin. J. Clim. 2004;17:4752–4759. doi: 10.1175/JCLI-3186.1. DOI
Wang G, Zhang N, Fan K, Palus M. Central European air temperature: Driving force analysis and causal influence of NAO. Theoret. Appl. Climatol. 2019;137:1421–1427. doi: 10.1007/s00704-018-2676-1. DOI
Hlinka J, Jajcay N, Hartman D, Paluš M. Smooth information flow in temperature climate network reflects mass transport. Chaos Interdiscip. J. Nonlinear Sci. 2017;27:035811. doi: 10.1063/1.4978028. PubMed DOI
Nagaraj N, Balasubramanian K, Dey S. A new complexity measure for time series analysis and classification. Eur. Phys. J. Special Top. 2013;222:847–860. doi: 10.1140/epjst/e2013-01888-9. DOI