Long-Term Device Satisfaction and Safety after Cochlear Implantation in Children
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FNBr, 65269705
Ministry of Health
MUNI/A/1132/2021
Masaryk University
PubMed
36013275
PubMed Central
PMC9410025
DOI
10.3390/jpm12081326
PII: jpm12081326
Knihovny.cz E-zdroje
- Klíčová slova
- audio processor satisfaction questionnaire (APSQ), cochlear implants, cumulative survival, device use, pediatric,
- Publikační typ
- časopisecké články MeSH
(1) Objectives: For full benefit in children implanted with a cochlear implant (CI), wearing the device all waking hours is necessary. This study focuses on the relationship between daily use and audiological outcomes, with the hypothesis that frequent daily device use coincides with high device satisfaction resulting in better functional gain (FG). Confounding factors such as implantation age, device experience and type of device were considered. (2) Results: Thirty-eight CI children (65 ears) were investigated. In total, 76.92% of the children were using their device for >12 h per day (h/d), 18.46% for 9−12 h/d, the remaining for 6−9 h/d and one subject reported 3 h/d. The revision rate up to the 90-month follow-up (F/U) was 4.6%. The mean FG was 59.00 ± 7.67 dB. The Audio Processor Satisfaction Questionnaire (APSQ) separated for single unit (SU) versus behind the ear (BTE) devices showed significantly better results for the latter in terms of wearing comfort (WC) (p = 0.00062). A correlation between device use and FG was found with a device experience of <2 years (n = 29; r2 = 0.398), whereas no correlation was seen with ≥2 years of device experience (n = 36; r2 = 0.0038). (3) Conclusion: This study found significant relationships between daily device use and FG, wearing comfort and long-term safety (90 months).
Department of Pediatrics University Hospital Brno 61300 Brno Czech Republic
Faculty of Medicine Masaryk University Brno Kamenice 5 62500 Brno Czech Republic
Zobrazit více v PubMed
Sladen D.P., Zappler A. Older and younger adult cochlear implant users: Speech recognition in quiet and noise, quality of life, and music perception. Am. J. Audiol. 2015;24:31–39. doi: 10.1044/2014_AJA-13-0066. PubMed DOI
Capretta N.R., Moberly A.C. Does quality of life depend on speech recognition performance for adult cochlear implant users? Laryngoscope. 2016;126:699–706. doi: 10.1002/lary.25525. PubMed DOI
Phan J., Houston D.M., Ruffin C., Ting J., Holt R.F. Factors Affecting Speech Discrimination in Children with Cochlear Implants: Evidence from Early-Implanted Infants. J. Am. Acad. Audiol. 2016;27:480–488. doi: 10.3766/jaaa.15088. PubMed DOI PMC
Chweya C.M., May M.M., DeJong M.D., Baas B.S., Lohse C.M., Driscoll C.L.W., Carlson M.L. Language and Audiological Outcomes Among Infants Implanted Before 9 and 12 Months of Age Versus Older Children: A Continuum of Benefit Associated With Cochlear Implantation at Successively Younger Ages. Otol. Neurotol. 2021;42:686–693. doi: 10.1097/MAO.0000000000003060. PubMed DOI
Dunn C.C., Walker E.A., Oleson J., Kenworthy M., Van Voorst T., Tomblin J.B., Ji H., Kirk K.I., McMurray B., Hanson M., et al. Longitudinal speech perception and language performance in pediatric cochlear implant users: The effect of age at implantation. Ear Hear. 2014;35:148–160. doi: 10.1097/AUD.0b013e3182a4a8f0. PubMed DOI PMC
Ramirez-Inscoe J., Moore D.R. Processes that influence communicative impairments in deaf children using cochlear implants. Ear Hear. 2011;32:690–698. doi: 10.1097/AUD.0b013e31821f0538. PubMed DOI
Warner-Czyz A.D., Wiseman K.B., Nelson J.A. Quantitative and Qualitative Perspectives of Siblings of Children with Cochlear Implants. J. Speech Lang. Hear. Res. 2021;64:2854–2869. doi: 10.1044/2021_JSLHR-20-00624. PubMed DOI
Fagan M.K. Frequency of vocalization before and after cochlear implantation: Dynamic effect of auditory feedback on infant behavior. J. Exp. Child Psychol. 2014;126:328–338. doi: 10.1016/j.jecp.2014.05.005. PubMed DOI PMC
Fagan M.K. Why repetition? Repetitive babbling, auditory feedback, and cochlear implantation. J. Exp. Child Psychol. 2015;137:125–136. doi: 10.1016/j.jecp.2015.04.005. PubMed DOI PMC
Fagan M.K. Cochlear implantation at 12 months: Limitations and benefits for vocabulary production. Cochlear Implant. Int. 2015;16:24–31. doi: 10.1179/1754762814Y.0000000075. PubMed DOI
Holman M.A., Carlson M.L., Driscoll C.L., Grim K.J., Petersson R.S., Sladen D.P., Flick R.P. Cochlear implantation in children 12 months of age and younger. Otol. Neurotol. 2013;34:251–258. doi: 10.1097/MAO.0b013e31827d0922. PubMed DOI
McKinney S. Cochlear implantation in children under 12 months of age. Curr. Opin. Otolaryngol. Head Neck Surg. 2017;25:400–404. doi: 10.1097/MOO.0000000000000400. PubMed DOI
Yang Y., Chen M., Zheng J., Hao J., Liu B., Liu W., Li B., Shao J., Liu H., Ni X., et al. Clinical evaluation of cochlear implantation in children younger than 12 months of age. Pediatr. Investig. 2020;4:99–103. doi: 10.1002/ped4.12202. PubMed DOI PMC
Papsin B.C. Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope. 2005;115:1–26. doi: 10.1097/00005537-200501001-00001. PubMed DOI
Vieira S.S., Dupas G., Chiari B.M. Cochlear implant: The family’s perspective. Cochlear Implants Int. 2018;19:216–224. doi: 10.1080/14670100.2018.1426406. PubMed DOI
Chiossi J.S.C., Hyppolito M.A. Effects of residual hearing on cochlear implant outcomes in children: A systematic-review. Int. J. Pediatr. Otorhinolaryngol. 2017;100:119–127. doi: 10.1016/j.ijporl.2017.06.036. PubMed DOI
Holzinger D., Dall M., Sanduvete-Chaves S., Saldana D., Chacon-Moscoso S., Fellinger J. The Impact of Family Environment on Language Development of Children With Cochlear Implants: A Systematic Review and Meta-Analysis. Ear Hear. 2020;41:1077–1091. doi: 10.1097/AUD.0000000000000852. PubMed DOI
Gatehouse S., Noble W. The Speech, Spatial and Qualities of Hearing Scale (SSQ) Int. J. Audiol. 2004;43:85–99. doi: 10.1080/14992020400050014. PubMed DOI PMC
Zarifian T., Movallali G., Fotuhi M., Harouni G.G. Validation of the Persian version of the LittlEARS((R)) auditory questionnaire for assessment of auditory development in children with normal hearing. Int. J. Pediatr. Otorhinolaryngol. 2019;123:79–83. doi: 10.1016/j.ijporl.2019.04.016. PubMed DOI
Schaefer K., Coninx F., Fischbach T. LittlEARS auditory questionnaire as an infant hearing screening in Germany after the newborn hearing screening. Int. J. Audiol. 2019;58:468–475. doi: 10.1080/14992027.2019.1597287. PubMed DOI
Rauhamaki T., Lonka E., Lipsanen J., Laakso M. Assessment of early auditory development of very young Finnish children with LittlEARS((R)) Auditory Questionnaire and McArthur Communicative Developmental Inventories. Int. J. Pediatr. Otorhinolaryngol. 2014;78:2089–2096. doi: 10.1016/j.ijporl.2014.09.010. PubMed DOI
Persson A., Miniscalco C., Lohmander A., Flynn T. Validation of the Swedish version of the LittlEARS((R)) Auditory Questionnaire in children with normal hearing—A longitudinal study. Int. J. Audiol. 2019;58:635–642. doi: 10.1080/14992027.2019.1621397. PubMed DOI
Obrycka A., Lorens A., Padilla Garcia J.L., Piotrowska A., Skarzynski H. Validation of the LittlEARS Auditory Questionnaire in cochlear implanted infants and toddlers. Int. J. Pediatr. Otorhinolaryngol. 2017;93:107–116. doi: 10.1016/j.ijporl.2016.12.024. PubMed DOI
Kayode O., Adeyemo A.A. The Yoruba version of LittlEARS Auditory Questionnaire: Evaluation of auditory development in children with normal hearing. J. Otol. 2018;13:92–96. doi: 10.1016/j.joto.2018.07.001. PubMed DOI PMC
Obrycka A., Lorens A., Walkowiak A., Wlodarczyk E., Dziendziel B., Skarzynski P.H., Skarzynski H. The COVID-19 pandemic and upgrades of CI speech processors for children: Part II-hearing outcomes. Eur. Arch. Otorhinolaryngol. 2022;14:1–9. doi: 10.1007/s00405-022-07324-8. PubMed DOI PMC
Billinger-Finke M., Bracker T., Weber A., Amann E., Anderson I., Batsoulis C. Development and validation of the audio processor satisfaction questionnaire (APSQ) for hearing implant users. Int. J. Audiol. 2020;59:392–397. doi: 10.1080/14992027.2019.1697830. PubMed DOI
Wiseman K.B., Warner-Czyz A.D., Kwon S., Fiorentino K., Sweeney M. Relationships Between Daily Device Use and Early Communication Outcomes in Young Children With Cochlear Implants. Ear Hear. 2021;42:1042–1053. doi: 10.1097/AUD.0000000000000999. PubMed DOI
Bugden S., Park A.T., Mackey A.P., Brannon E.M. The neural basis of number word processing in children and adults. Dev. Cogn. Neurosci. 2021;51:101011. doi: 10.1016/j.dcn.2021.101011. PubMed DOI PMC
Gagnon E.B., Eskridge H., Brown K.D. Pediatric cochlear implant wear time and early language development. Cochlear Implants Int. 2020;21:92–97. doi: 10.1080/14670100.2019.1670487. PubMed DOI
Busch T., Vermeulen A., Langereis M., Vanpoucke F., van Wieringen A. Cochlear Implant Data Logs Predict Children’s Receptive Vocabulary. Ear Hear. 2020;41:733–746. doi: 10.1097/AUD.0000000000000818. PubMed DOI
Wie O.B., Torkildsen J.V.K., Schauber S., Busch T., Litovsky R. Long-Term Language Development in Children with Early Simultaneous Bilateral Cochlear Implants. Ear Hear. 2020;41:1294–1305. doi: 10.1097/AUD.0000000000000851. PubMed DOI PMC
Geal-Dor M., Tranovsky Y., Boudilovsky E., Adelman C., Adler M., Levi H. Acquisition of early auditory milestones with a cochlear implant. Int. J. Pediatric Otorhinolaryngol. 2013;77:1852–1855. doi: 10.1016/j.ijporl.2013.08.027. PubMed DOI
May-Mederake B., Dettman S.J., Wall E., Constantinescu G., Dowell R.C. Early intervention and assessment of speech and language development in young children with cochlear implants. Int. J. Pediatric Otorhinolaryngol. 2012;76:939–946. doi: 10.1016/j.ijporl.2012.02.051. PubMed DOI
Spencer L., Oleson J.J. Early Listening and Speaking Skills Predict Later Reading Proficiency in Pediatric Cochlear Implant Users. Ear Hear. 2008;29:270–280. doi: 10.1097/01.aud.0000305158.84403.f7. PubMed DOI PMC
Briaire J.J., Indian Research G., Buchner A., Auletta G., Arroyo H., Zoilo C., Mancini P., Buhagiar R., Vaid N., Mathias N. Survey of Cochlear Implant User Satisfaction with the Neptune Waterproof Sound Processor. Audiol. Res. 2016;6:146. doi: 10.4081/audiores.2016.146. PubMed DOI PMC
Dazert S., Thomas J.P., Buchner A., Muller J., Hempel J.M., Lowenheim H., Mlynski R. Off the ear with no loss in speech understanding: Comparing the RONDO and the OPUS 2 cochlear implant audio processors. Eur. Arch. Otorhinolaryngol. 2017;274:1391–1395. doi: 10.1007/s00405-016-4400-z. PubMed DOI
Niparko J.K., Tobey E.A., Thal D.J., Eisenberg L.S., Wang N.Y., Quittner A.L., Fink N.E. Spoken language development in children following cochlear implantation. JAMA. 2010;303:1498–1506. doi: 10.1001/jama.2010.451. PubMed DOI PMC
Karltorp E., Eklöf M., Östlund E., Asp F., Tideholm B., Löfkvist U. Cochlear implants before 9 months of age led to more natural spoken language development without increased surgical risks. Acta. Paediatr. 2020;109:332–341. doi: 10.1111/apa.14954. PubMed DOI
Nicholas J.G., Geers A.E. Spoken language benefits of extending cochlear implant candidacy below 12 months of age. Otol. Neurotol. 2013;34:532–538. doi: 10.1097/MAO.0b013e318281e215. PubMed DOI PMC
Glaubitz C., Liebscher T., Hoppe U. Age-related language performance and device use in children with very early bilateral cochlear implantation. Int. J. Pediatr. Otorhinolaryngol. 2021;147:110780. doi: 10.1016/j.ijporl.2021.110780. PubMed DOI
Purcell P.L., Deep N.L., Waltzman S.B., Roland J.T., Jr., Cushing S.L., Papsin B.C., Gordon K.A. Cochlear Implantation in Infants: Why and How. Trends Hear. 2021;25:23312165211031751. doi: 10.1177/23312165211031751. PubMed DOI PMC
Tufatulin G.S., Koroleva I.V., Artyushkin S.A., Yanov Y.K. The benefits of underwater vibrostimulation in the rehabilitation of children with impaired hearing. Int. J. Pediatr. Otorhinolaryngol. 2021;149:110855. doi: 10.1016/j.ijporl.2021.110855. PubMed DOI
Välimaa T.T., Kunnari S., Aarnisalo A., Dietz A., Hyvärinen A., Laitakari J., Mykkänen S., Rimmanen S., Salonen J., Sivonen V., et al. Spoken Language Skills in Children With Bilateral Hearing Aids or Bilateral Cochlear Implants at the Age of Three Years. Ear Hear. 2021;43:220–233. doi: 10.1097/AUD.0000000000001092. PubMed DOI PMC
Leigh J., Dettman S., Dowell R., Briggs R. Communication development in children who receive a cochlear implant by 12 months of age. Otol. Neurotol. 2013;34:443–450. doi: 10.1097/MAO.0b013e3182814d2c. PubMed DOI
Black J., Hickson L., Black B., Khan A. Paediatric cochlear implantation: Adverse prognostic factors and trends from a review of 174 cases. Cochlear Implants Int. 2014;15:62–77. doi: 10.1179/1754762813Y.0000000045. PubMed DOI
Baumgartner W.D., Pok S.M., Egelierler B., Franz P., Gstoettner W., Hamzavi J. The role of age in pediatric cochlear implantation. Int. J. Pediatr. Otorhinolaryngol. 2002;62:223–228. doi: 10.1016/S0165-5876(01)00621-8. PubMed DOI
Dettman S.J., Dowell R.C., Choo D., Arnott W., Abrahams Y., Davis A., Dornan D., Leigh J., Constantinescu G., Cowan R., et al. Long-term Communication Outcomes for Children Receiving Cochlear Implants Younger Than 12 Months: A Multicenter Study. Otol. Neurotol. 2016;37:e82–e95. doi: 10.1097/MAO.0000000000000915. PubMed DOI
Van C.H., Deriaz M., Patrucco-Nanchen T., Kos M. Performances in Prelingual Implanted Children According to the Age of Implantation and the Duration of CI Use. Cochlear Implant. Int. 2010;11:268–271. doi: 10.1179/146701010X12671177989110. PubMed DOI
Hawker K., Ramirez-Inscoe J.M., Bishop D., Twomey T., O’Donoghue G.M., Moore D. Disproportionate Language Impairment in Children Using Cochlear Implants. Ear Hear. 2008;29:467–471. doi: 10.1097/AUD.0b013e318167b857. PubMed DOI
Huber M., Hitzl W., Albegger K. Education and training of young people who grew up with cochlear implants. Int. J. Pediatric Otorhinolaryngol. 2008. ahead of print . PubMed
Easwar V., Sanfilippo J., Papsin B., Gordon K. Impact of Consistency in Daily Device Use on Speech Perception Abilities in Children with Cochlear Implants: Datalogging Evidence. J. Am. Acad. Audiol. 2018;29:835–846. doi: 10.3766/jaaa.17051. PubMed DOI
De Raeve L. Education and rehabilitation of deaf children with cochlear implants: A multidisciplinary task. Cochlear Implant. Int. 2010;11((Suppl. 1)):7–14. doi: 10.1179/146701010X12671178390717. PubMed DOI
Wass M., Lyxell B., Sahle B., Asker-Arnason L., Ibertsson T., Maki-Torkko E., Hallgren M., Larsby B. Cognitive skills and reading ability in children with cochlear implants. Cochlear Implant. Int. 2010;11((Suppl. 1)):395–398. doi: 10.1179/146701010X12671178103751. PubMed DOI
Parent V., Codet M., Aubry K., Bordure P., Bozorg-Grayeli A., Deguine O., Eyermann C., Franco-Vidal V., Guevara N., Karkas A., et al. The French Cochlear Implant Registry (EPIIC): Cochlear implantation complications. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2020;137((Suppl. 1)):S37–S43. doi: 10.1016/j.anorl.2020.07.007. PubMed DOI
Yeung J., Griffin A., Newton S., Kenna M., Licameli G.R. Revision cochlear implant surgery in children: Surgical and audiological outcomes. Laryngoscope. 2018;128:2619–2624. doi: 10.1002/lary.27198. PubMed DOI