Robust Optimization and Power Management of a Triple Junction Photovoltaic Electric Vehicle with Battery Storage

. 2022 Aug 16 ; 22 (16) : . [epub] 20220816

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36015883

This paper highlights a robust optimization and power management algorithm that supervises the energy transfer flow to meet the photovoltaic (PV) electric vehicle demand, even when the traction system is in motion. The power stage of the studied system consists of a triple-junction PV generator as the main energy source, a lithium-ion battery as an auxiliary energy source, and an electric vehicle. The input-output signal adaptation is made by using a stage of energy conversion. A bidirectional DC-DC buck-boost connects the battery to the DC-link. Two unidirectional boost converters interface between the PV generator and the DC link. One is controlled with a maximum power point tracking (MPPT) algorithm to reach the maximum power points. The other is used to control the voltage across the DC-link. The converters are connected to the electric vehicle via a three-phase inverter via the same DC-link. By considering the nonlinear behavior of these elements, dynamic models are developed. A robust nonlinear MPPT algorithm has been developed owing to the nonlinear dynamics of the PV generator, metrological condition variations, and load changes. The high performance of the MPPT algorithm is effectively highlighted over a comparative study with two classical P & O and the fuzzy logic MPPT algorithms. A nonlinear control based on the Lyapunov function has been developed to simultaneously regulate the DC-link voltage and control battery charging and discharging operations. An energy management rule-based strategy is presented to effectively supervise the power flow. The conceived system, energy management, and control algorithms are implemented and verified in the Matlab/Simulink environment. Obtained results are presented and discussed under different operating conditions.

Zobrazit více v PubMed

Mohammed A., Brahim G., Othmane A., Jamel G., Tofik T., Abdeselem C. Comparative study of energy management strategies for hybrid proton exchange membrane fuel cell four wheel drive electric vehicle. J. Power Sources. 2020;462:228167.

Brtka E., Jotanovic G., Stjepanovic A., Jausevac G., Kosovac A., Cvitić I., Kostadinovic M. Model of Hybrid Electric Vehicle with Two Energy Sources. Electronics. 2022;11:1993. doi: 10.3390/electronics11131993. DOI

Ahmad I., Dewan K.K. Electric vehicle: A futuristic approach to reduce pollution (A case study of Delhi) World Rev. Intermodal Transp. Res. 2007;1:300–312. doi: 10.1504/WRITR.2007.016276. DOI

Kawtar B., Lebrouhi A., Mohammed M. Novel external cooling solution for electric vehicle battery pack. Energy Rep. 2020;6:262–272.

Amjad S., Neelakrishnan S., Rudramoorthy R. Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles. Renew. Sustain. Energy Rev. 2010;14:1104–1110. doi: 10.1016/j.rser.2009.11.001. DOI

Panneerselvam R., James A., Vijaya S. Sensing and Analysis of Greenhouse Gas Emissions from Rice Fields to the Near Field Atmosphere. Sensors. 2022;22:4141. PubMed PMC

Pedro A., Ivanovitch S., Marianne S., Thommas F., Jordão C., Daniel G.C. A Tiny ML Soft-Sensor Approach for Low-Cost Detection and Monitoring of Vehicular Emissions. Sensors. 2022;22:3838. PubMed PMC

Stefano B., Paolo N. Estimating CO2 Emissions from IoT Traffic Flow Sensors and Reconstruction. Sensors. 2022;22:3382. PubMed PMC

Aleksandar M. Photovoltaic’s advancements for transition from renewable to clean energy. Energy. 2021;237:121510.

Feng S.H., Chienab C., Ching-Chi H., Ilhan O., Kcde A., Shariff M. The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations. Renew. Energy. 2022;186:207–216.

Bagheria S., Huanga Y., Walkerb P., Zhoua J., Surawskia N. Strategies for improving the emission performance of hybrid electric vehicles. Sci. Total Environ. 2021;771:144901. doi: 10.1016/j.scitotenv.2020.144901. PubMed DOI

Hong J., Ma F., Xu X., Yang J., Zhang H. A novel mechanical-electric-hydraulic power coupling electric vehicle considering different electrohydraulic distribution ratios. Energy Convers. Manag. 2021;249:114870. doi: 10.1016/j.enconman.2021.114870. DOI

Kim W., Lee P., Kim J., Kim S. A Robust State of Charge Estimation Approach Based on Nonlinear Battery Cell Model for Lithium-Ion Batteries in Electric Vehicles. IEEE Trans. Veh. Technol. 2021;70:5638–5647. doi: 10.1109/TVT.2021.3079934. DOI

Emmanuel A., Annette J., Alexandre Y. An Overview of Electric Machine Trends in Modern Electric Vehicles. Machines. 2020;8:20.

Flah A., Irfan A.K., Agarwal A., Sbita L., Simoes M.G. Field-oriented control strategy for double-stator single-rotor and double-rotor single-stator permanent magnet machine: Design and operation. Comput. Electr. Eng. 2021;90:106953. doi: 10.1016/j.compeleceng.2020.106953. DOI

Mahmoudi C., Flah A., Sbita L. Smart database concept for power management in an electrical vehicle. Int. J. Power Electron. Drive Syst. 2019;10:160–169. doi: 10.11591/ijpeds.v10.i1.pp160-169. DOI

Shuai Z., Yuvraj G., Appadoob S., Abdulkaderb M. Electric vehicle routing problem with recharging stations for minimizing energy consumption. Int. J. Prod. Econ. 2018;203:404–413.

Riccardo I., Benjamin M., Tetsuo T. Optimization of shared autonomous electric vehicles operations with charge scheduling and vehicle-to-grid. Transp. Res. Part C Emerg. Technol. 2019;100:34–52.

Du J., Yu F.R., Lu G., Wang J., Jiang J., Chu X. MEC-Assisted Immersive VR Video Streaming Over Terahertz Wireless Networks: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2020;7:9517–9529. doi: 10.1109/JIOT.2020.3003449. DOI

Cong Thanh N., Paul D.W., Shilei Z. Optimal sizing and energy management of an electric vehicle powertrain equipped with two motors and multi-gear ratios. Mech. Mach. Theory. 2022;167:104513.

Du C., Huang S., Jiang Y., Wu D., Li Y. Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming. Energies. 2022;15:4325. doi: 10.3390/en15124325. DOI

Ali A., Shivapurkar R., Soeffker D. Development and Improvement of a Situation-Based Power Management Method for Multi-Source Electric Vehicles; Proceedings of the 2018 IEEE Vehicle Power and Propulsion Conference (VPPC); Chicago, IL, USA. 27–30 August 2018; pp. 1–6.

Kim J., Kim H., Bae J., Kim D., Eo J., Kim K. Economic Nonlinear Predictive Control for Real-Time Optimal Energy Management of Parallel Hybrid Electric Vehicles. IEEE Access. 2020;8:177896–177920. doi: 10.1109/ACCESS.2020.3027024. DOI

Allegre A., Bouscayrol A., Trigui R. Influence of control strategies on battery/supercapacitor hybrid Energy Storage Systems for traction applications; Proceedings of the 2009 IEEE Vehicle Power and Propulsion Conference; Dearborn, MI, USA. 7–10 September 2009; pp. 213–220.

Hannan M., Azidin F., Mohamed A. Multi-sources model and control algorithm of an energy management system for light electric vehicles. Energy Convers. Manag. 2012;62:123–130. doi: 10.1016/j.enconman.2012.04.001. DOI

Hussain S., Ahmed M., Kim Y. Efficient Power Management Algorithm Based on Fuzzy Logic Inference for Electric Vehicles Parking Lot. IEEE Access. 2019;7:65467–65485. doi: 10.1109/ACCESS.2019.2917297. DOI

Song Z., Hofmann H., Li J., Hou J., Han X., Ouyang M. Energy management strategies comparison for electric vehicles with hybrid energy storage system. Appl. Energy. 2014;134:321–331. doi: 10.1016/j.apenergy.2014.08.035. DOI

Camara M., Gualous H., Gustin F., Berthon A. Design and new control of dc/dc converters to share energy between supercapacitors and batteries in hybrid vehicles. IEEE Trans. Veh. Technol. 2008;57:2721–2735. doi: 10.1109/TVT.2008.915491. DOI

Adam D., Andrzej A., Michał S., Krzysztof T., Mykola K. The Concept of Using an Expert System and Multi-Valued Logic Trees to Assess the Energy Consumption of an Electric Car in Selected Driving Cycles. Energies. 2022;15:4631.

Yi G., Jiaqi M. Leveraging existing high-occupancy vehicle lanes for mixed-autonomy traffic management with emerging connected automated vehicle applications. Transp. A Transp. Sci. 2020;16:1375–1399.

Teeneti C., Truscott T., Beal D., Pantic Z. Review of Wireless Charging Systems for Autonomous Underwater Vehicles. IEEE J. Ocean. Eng. 2021;46:68–87. doi: 10.1109/JOE.2019.2953015. DOI

Yang X., Zhang Y., Zhang T., Xu B., Yi B. Enhancing Utilization of PV Energy in Building Micro grids via Autonomous Demand Response. IEEE Access. 2021;9:23554–23564. doi: 10.1109/ACCESS.2021.3052521. DOI

Ahmed Ismail M.A., Hassanien R. Improved P&O MPPT algorithm with efficient open-circuit voltage estimation for two-stage grid-integrated PV system under realistic solar radiation. Int. J. Electr. Power Energy Syst. 2022;137:107805.

Van N., Mohsen L., Rabeh A., Jerbi H. Improved Krill Herd Algorithm based Sliding Mode MPPT Controller for Variable Step Size P&O method in PV system under Simultaneous Change of Irradiance and Temperature. J. Frankl. Inst. 2021;358:3481–3511.

Mingxin J., Mehrdad G., Sajjad D., Hongbo C., Yahya A., Noritoshi F. A novel combinatorial hybrid SFL–PS algorithm based neural network with perturb and observe for the MPPT controller of a hybrid PV-storage system. Control Eng. Pract. 2021;114:104880.

Loukriz A., Mourad H., Sabir M. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems. ISA Trans. 2016;62:30–38. doi: 10.1016/j.isatra.2015.08.006. PubMed DOI

Kok Soon T., Saad M. Modified Incremental Conductance MPPT Algorithm to Mitigate Inaccurate Responses Under Fast-Changing Solar Irradiation Level. J. Sol. Energy. 2014;101:333–342.

Kamarzaman N.A., Tan C.W. A Comprehensive Review of Maximum Power Point Tracking Algorithms for Photovoltaic Systems. Renew. Sust. Energ. Rev. 2014;37:585–598. doi: 10.1016/j.rser.2014.05.045. DOI

Bhukya L., Anil A., Nandiraju V.S. A grey wolf optimized fuzzy logic based MPPT for shaded solar photovoltaic systems in microgrids. Int. J. Hydrog. Energy. 2021;46:10653–10665.

Milad F., Jafar Amiri P. Intelligent MPPT for photovoltaic panels using a novel fuzzy logic and artificial neural networks based on evolutionary algorithms. Energy Rep. 2021;7:1338–1348.

Hajar D., Issam S., Mohammed C., Najib E. High Performance MPPT based on TS Fuzzy–integral backstepping control for PV system under rapid varying irradiance—Experimental validation. ISA Trans. 2021;118:247–259. PubMed

Julien V.-P., Carlos R.-A., Diego R.-L. Code and data from an ADALINE network trained with the RTRL and LMS algorithms for an MPPT controller in a photovoltaic system. Data Br. 2020;32:106296. PubMed PMC

Salim I., Wassila I., Abdelkrim K. New intelligent control strategy by robust neural network algorithm for real time detection of an optimized maximum power tracking control in photovoltaic systems. Energy J. 2019;187:115881.

Ahmet G., Resat C. ANN-Based MPPT Algorithm for Photovoltaic Systems. Turkish J. Earth Sci. 2020;15:101–110.

Wafa H., Emanuele O., Alberto D., Aicha A., Ben Hamed M., Sbita L. Improved PSO: A Comparative Study in MPPT Algorithm for PV System Control under Partial Shading Conditions. Energies. 2020;13:2035.

Zafar M.H., Khan N.M., Mirza A.F., Mansoor M., Akhtar N., Qadir M.U., Khan N.A., Moosavi S.K.R. A novel meta-heuristic optimization algorithm based MPPT control technique for PV systems under complex partial shading conditions. Sustain. Energy Technol. Assess. 2021;47:101367.

Chanuri C., Dahaman I., Muhammad Ammirrul Atiqi M.Z., Baharuddin I., Mohamad Kamarol Mohd J. A hybrid of bio-inspired algorithm based on Levy flight and particle swarm optimizations for photovoltaic system under partial shading conditions. Sol. Energy. 2021;217:1–14. doi: 10.1016/j.solener.2021.01.049. DOI

Garraoui R., Ben Hamed M., Sbita L. A Robust Optimization Technique Based on First Order Sliding Mode Approach for Photovoltaic Power Systems. Int. J. Autom. Comput. 2015;12:620–629. doi: 10.1007/s11633-015-0902-1. DOI

Garraoui R., Barambones O., Ben Hamed M., Sbita L. Real-time implementation of a maximum power point tracking algorithm based on first order sliding mode strategy for photovoltaic power systems. Trans. Inst. Meas. Control. 2017;40:1–11. doi: 10.1177/0142331216688748. DOI

Aymen F., Sbita L. A novel IMC controller based on bacterial foraging optimization algorithm applied to a high speed range PMSM drive. Appl. Intell. 2013;38:114–129.

Kailong L., Ashwin T.R., Hu X., Lucu M., Dhammika Widanage W. An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries. Renew. Sustain. Energy Rev. 2020;131:110017.

Beni Hamed S., Ben Hamed M., Sbita L. A dynamic mathematical model of lithum-ion battery in Matlab/Simulink; Proceedings of the 17th International Multi-Conference on Systems, Signals & Devices (SSD); Monastir, Tunisia. 20–23 July 2020; pp. 491–494.

Caliwag A., Lim W. Hybrid VARMA and LSTM Method for Lithium-ion Battery State-of-Charge and Output Voltage Forecasting in Electric Motorcycle Applications. IEEE Access. 2019;7:59680–59689. doi: 10.1109/ACCESS.2019.2914188. DOI

Riquelme-Dominguez J., Martinez S. Systematic evaluation of photovoltaic MPPT algorithms using state-space models under different dynamic test procedures. IEEE Access. 2022;10:45772–45783. doi: 10.1109/ACCESS.2022.3170714. DOI

Zadeh L. Fuzzy sets. Inf. Technol. Control. 1965;8:338–353. doi: 10.1016/S0019-9958(65)90241-X. DOI

Mihoub M., Nouri A.S., Ben Abdennour R. Real-time application of discrete second order sliding mode control to a chemical reactor. Control Eng. Pract. 2009;19:1089–1095. doi: 10.1016/j.conengprac.2009.04.005. DOI

Pahlevaninezhad M., Das P., Drobnik J., Moschopoulos G., Jain P., Bakhshai A. A Nonlinear Optimal Control Approach Based on the Control-Lyapunov Function for an AC/DC Converter Used in Electric Vehicles. IEEE Trans. Industr. Inform. 2012;8:596–614. doi: 10.1109/TII.2012.2193894. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...