A normative model of peripersonal space encoding as performing impact prediction
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36103520
PubMed Central
PMC9512250
DOI
10.1371/journal.pcbi.1010464
PII: PCOMPBIOL-D-22-00210
Knihovny.cz E-resources
- MeSH
- Bayes Theorem MeSH
- Touch physiology MeSH
- Touch Perception * physiology MeSH
- Neurons MeSH
- Personal Space * MeSH
- Space Perception physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.
See more in PubMed
Rizzolatti G, Scandolara C, Matelli M, Gentilucci M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behavioural Brain Research. 1981;2(2):147–163. doi: 10.1016/0166-4328(81)90052-8 PubMed DOI
Rizzolatti G, Fadiga L, Fogassi L, Gallese V. The space around us. Science. 1997;277(5323):190–191. doi: 10.1126/science.277.5323.190 PubMed DOI
Serino A. Peripersonal space (PPS) as a multisensory interface between the individual and the environment, defining the space of the self. Neuroscience & Biobehavioral Reviews. 2019;99:138–159. doi: 10.1016/j.neubiorev.2019.01.016 PubMed DOI
Cléry J, Hamed SB. Frontier of self and impact prediction. Frontiers in Psychology. 2018;9:1073. doi: 10.3389/fpsyg.2018.01073 PubMed DOI PMC
Cléry J, Hamed SB. Functional networks for peripersonal space coding and prediction of impact to the body. In: de Vignemont F, Serino A, Wong HY, Farnè A, editors. The world at our fingertips. Oxford University Press; 2021. p. 61–79.
Graziano MS, Cooke DF. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia. 2006;44(6):845–859. doi: 10.1016/j.neuropsychologia.2005.09.009 PubMed DOI
Huijsmans MK, de Haan AM, Müller BC, Dijkerman HC, van Schie HT. Knowledge of collision modulates defensive multisensory responses to looming insects in arachnophobes. Journal of Experimental Psychology: Human Perception and Performance. 2022;48(1):1. PubMed
Dijkerman H, Medendorp W. Visuotactile predictive mechanisms of peripersonal space. In: de Vignemont F, Serino A, Wong HY, Farnè A, editors. The world at our fingertips: a multidisciplinary exploration of peripersonal space. Oxford University Press; 2021. p. 81–100.
Cléry J, Guipponi O, Odouard S, Wardak C, Hamed SB. Impact prediction by looming visual stimuli enhances tactile detection. Journal of Neuroscience. 2015;35(10):4179–4189. doi: 10.1523/JNEUROSCI.3031-14.2015 PubMed DOI PMC
Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G. Coding of peripersonal space in inferior premotor cortex (area F4). Journal of Neurophysiology. 1996;76(1):141–157. doi: 10.1152/jn.1996.76.1.141 PubMed DOI
Magosso E, Zavaglia M, Serino A, Di Pellegrino G, Ursino M. Visuotactile representation of peripersonal space: a neural network study. Neural Computation. 2010;22(1):190–243. doi: 10.1162/neco.2009.01-08-694 PubMed DOI
Magosso E, Ursino M, di Pellegrino G, Làdavas E, Serino A. Neural bases of peri-hand space plasticity through tool-use: Insights from a combined computational–experimental approach. Neuropsychologia. 2010;48(3):812–830. doi: 10.1016/j.neuropsychologia.2009.09.037 PubMed DOI
Galli G, Noel JP, Canzoneri E, Blanke O, Serino A. The wheelchair as a full-body tool extending the peripersonal space. Frontiers in Psychology. 2015;6:639. doi: 10.3389/fpsyg.2015.00639 PubMed DOI PMC
Noel JP, Blanke O, Magosso E, Serino A. Neural adaptation accounts for the dynamic resizing of peripersonal space: evidence from a psychophysical-computational approach. Journal of Neurophysiology. 2018;119(6):2307–2333. doi: 10.1152/jn.00652.2017 PubMed DOI PMC
Noel JP, Bertoni T, Terrebonne E, Pellencin E, Herbelin B, Cascio C, et al.. Rapid recalibration of peri-personal space: psychophysical, electrophysiological, and neural network modeling evidence. Cerebral Cortex. 2020;30(9):5088–5106. doi: 10.1093/cercor/bhaa103 PubMed DOI PMC
Noel JP, Paredes R, Terrebonne E, Feldman JI, Woynaroski T, Cascio CJ, et al.. Inflexible Updating of the Self-Other Divide During a Social Context in Autism; Psychophysical, Electrophysiological, and Neural Network Modeling Evidence. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2021;. doi: 10.1016/j.bpsc.2021.03.013 PubMed DOI PMC
Bertoni T, Magosso E, Serino A. From statistical regularities in multisensory inputs to peripersonal space representation and body ownership: Insights from a neural network model. European Journal of Neuroscience. 2021;53(2):611–636. doi: 10.1111/ejn.14981 PubMed DOI PMC
Straka Z, Hoffmann M. Learning a Peripersonal Space Representation as a Visuo-Tactile Prediction Task. In: Lintas A, Rovetta S, Verschure PFMJ, Villa AEP, editors. Artificial Neural Networks and Machine Learning—ICANN 2017: 26th International Conference on Artificial Neural Networks, Alghero, Italy, September 11-14, 2017, Proceedings, Part I. Cham: Springer International Publishing; 2017. p. 101–109.
Roncone A, Hoffmann M, Pattacini U, Fadiga L, Metta G. Peripersonal space and margin of safety around the body: learning visuo-tactile associations in a humanoid robot with artificial skin. PloS ONE. 2016;11(10):e0163713. doi: 10.1371/journal.pone.0163713 PubMed DOI PMC
Bufacchi RJ, Liang M, Griffin LD, Iannetti GD. A geometric model of defensive peripersonal space. Journal of Neurophysiology. 2016;115(1):218–225. doi: 10.1152/jn.00691.2015 PubMed DOI PMC
Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature. 2002;415(6870):429–433. doi: 10.1038/415429a PubMed DOI
Hillis JM, Ernst MO, Banks MS, Landy MS. Combining sensory information: mandatory fusion within, but not between, senses. Science. 2002;298(5598):1627–1630. doi: 10.1126/science.1075396 PubMed DOI
Ma WJ, Beck JM, Latham PE, Pouget A. Bayesian inference with probabilistic population codes. Nature Neuroscience. 2006;9(11):1432–1438. doi: 10.1038/nn1790 PubMed DOI
Van Beers RJ, Sittig AC, van der Gon JJD. Integration of proprioceptive and visual position-information: An experimentally supported model. Journal of Neurophysiology. 1999;81(3):1355–1364. doi: 10.1152/jn.1999.81.3.1355 PubMed DOI
Ma WJ. Bayesian decision models: A primer. Neuron. 2019;104(1):164–175. doi: 10.1016/j.neuron.2019.09.037 PubMed DOI
Duda RO, Hart PE, Stork DG. Bayesian Decision Theory. In: Pattern Classification (2nd Edition). 2nd ed. Wiley-Interscience; 2000. p. 20–83.
Ma WJ, Jazayeri M. Neural coding of uncertainty and probability. Annual review of Neuroscience. 2014;37:205–220. doi: 10.1146/annurev-neuro-071013-014017 PubMed DOI
Colombo M, Seriès P. Bayes in the Brain—On Bayesian Modelling in Neuroscience. British Journal for the Philosophy of Science. 2012;63(3). doi: 10.1093/bjps/axr043 DOI
Canzoneri E, Magosso E, Serino A. Dynamic Sounds Capture the Boundaries of Peripersonal Space Representation in Humans. PLoS ONE. 2012;7(9). doi: 10.1371/journal.pone.0044306 PubMed DOI PMC
Graziano MS, Hu XT, Gross CG. Visuospatial properties of ventral premotor cortex. Journal of Neurophysiology. 1997;77(5):2268–2292. doi: 10.1152/jn.1997.77.5.2268 PubMed DOI
Bufacchi RJ. Approaching threatening stimuli cause an expansion of defensive peripersonal space. Journal of Neurophysiology. 2017;118(4):1927–1930. doi: 10.1152/jn.00316.2017 PubMed DOI PMC
de Haan AM, Smit M, Van der Stigchel S, Dijkerman HC. Approaching threat modulates visuotactile interactions in peripersonal space. Experimental Brain Research. 2016;234(7):1875–1884. doi: 10.1007/s00221-016-4571-2 PubMed DOI PMC
Serino A, Noel JP, Galli G, Canzoneri E, Marmaroli P, Lissek H, et al.. Body part-centered and full body-centered peripersonal space representations. Scientific reports. 2015;5(1):1–14. doi: 10.1038/srep18603 PubMed DOI PMC
de Vignemont F, Iannetti G. How many peripersonal spaces? Neuropsychologia. 2015;70:327–334. PubMed
Duhamel JR, Bremmer F, Hamed SB, Graf W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature. 1997;389(6653):845–848. doi: 10.1038/39865 PubMed DOI
Duhamel JR, Colby CL, Goldberg ME. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. Journal of Neurophysiology. 1998;79(1):126–136. doi: 10.1152/jn.1998.79.1.126 PubMed DOI
Bufacchi RJ, Iannetti GD. An action field theory of peripersonal space. Trends in Cognitive Sciences. 2018;22(12):1076–1090. doi: 10.1016/j.tics.2018.09.004 PubMed DOI PMC
Ferri F, Tajadura-Jiménez A, Väljamäe A, Vastano R, Costantini M. Emotion-inducing approaching sounds shape the boundaries of multisensory peripersonal space. Neuropsychologia. 2015;70:468–475. doi: 10.1016/j.neuropsychologia.2015.03.001 PubMed DOI
Masson C, van der Westhuizen D, Noel JP, Prevost A, van Honk J, Fotopoulou A, et al.. Testosterone administration in women increases the size of their peripersonal space. Experimental Brain Research. 2021;239(5):1639–1649. doi: 10.1007/s00221-021-06080-1 PubMed DOI
Noel JP, Grivaz P, Marmaroli P, Lissek H, Blanke O, Serino A. Full body action remapping of peripersonal space: the case of walking. Neuropsychologia. 2015;70:375–384. doi: 10.1016/j.neuropsychologia.2014.08.030 PubMed DOI
Noel JP, Pfeiffer C, Blanke O, Serino A. Peripersonal space as the space of the bodily self. Cognition. 2015;144:49–57. doi: 10.1016/j.cognition.2015.07.012 PubMed DOI PMC
Serino A, Canzoneri E, Marzolla M, Di Pellegrino G, Magosso E. Extending peripersonal space representation without tool-use: evidence from a combined behavioral-computational approach. Frontiers in Behavioral Neuroscience. 2015;9:4. doi: 10.3389/fnbeh.2015.00004 PubMed DOI PMC
Taffou M, Viaud-Delmon I. Cynophobic fear adaptively extends peri-personal space. Frontiers in Psychiatry. 2014;5:122. doi: 10.3389/fpsyt.2014.00122 PubMed DOI PMC
Posner MI. Orienting of attention. Quarterly Journal of Experimental Psychology. 1980;32(1):3–25. doi: 10.1080/00335558008248231 PubMed DOI
Cléry J, Guipponi O, Odouard S, Pinède S, Wardak C, Hamed SB. The prediction of impact of a looming stimulus onto the body is subserved by multisensory integration mechanisms. Journal of Neuroscience. 2017;37(44):10656–10670. doi: 10.1523/JNEUROSCI.0610-17.2017 PubMed DOI PMC
Kandula M, Hofman D, Dijkerman HC. Visuo-tactile interactions are dependent on the predictive value of the visual stimulus. Neuropsychologia. 2015;70:358–366. doi: 10.1016/j.neuropsychologia.2014.12.008 PubMed DOI
Schlack A, Sterbing-D’Angelo SJ, Hartung K, Hoffmann KP, Bremmer F. Multisensory space representations in the macaque ventral intraparietal area. Journal of Neuroscience. 2005;25(18):4616–4625. doi: 10.1523/JNEUROSCI.0455-05.2005 PubMed DOI PMC
Odegaard B, Wozny DR, Shams L. Biases in visual, auditory, and audiovisual perception of space. PLoS Computational Biology. 2015;11(12):e1004649. doi: 10.1371/journal.pcbi.1004649 PubMed DOI PMC
Makin JG, Fellows MR, Sabes PN. Learning multisensory integration and coordinate transformation via density estimation. PLoS Computational Biology. 2013;9(4):e1003035. doi: 10.1371/journal.pcbi.1003035 PubMed DOI PMC