Composite TiO2-based photocatalyst with enhanced performance

. 2023 Jan ; 22 (1) : 73-86. [epub] 20220924

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36152273

Grantová podpora
19-12109S Grantová Agentura České Republiky
19-21801S Grantová Agentura České Republiky
LM2018124 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001821 Ministerstvo Školství, Mládeže a Tělovýchovy
MSM200402101 Akademie Věd České Republiky
Strategy AV21 No. 23 Akademie Věd České Republiky
FV40209 Ministerstvo Průmyslu a Obchodu

Odkazy

PubMed 36152273
DOI 10.1007/s43630-022-00300-5
PII: 10.1007/s43630-022-00300-5
Knihovny.cz E-zdroje

TiO2 is the most studied photocatalyst because of its non-toxicity, chemical stability, and low cost. However, the problem of TiO2 is its low activity in the visible region of the spectrum. In this study, we focused on the preparation of composite photocatalytic materials with altered light absorption properties. TiO2 P25 and various metal oxides were mechanically joined by ball-milling and immobilized on glass plates. The prepared samples were evaluated based on their ability to degrade NO in gas phase. The formation of undesirable byproducts was also investigated. Four best performing composites were later chosen, characterized, and further evaluated under various conditions. According to their performance, the metal oxide additives can be divided into three groups. P25/Fe2O3 showed the most promising results-an increase in overall deNOx activity under modified ISO conditions and altered selectivity (less NO2 is formed) under both simulated outdoor and simulated indoor conditions. On the other hand, P25/V2O5 composite showed negligible photocatalytic activity. The intermediate group includes P25/WO3 and P25/ZnO photocatalysts, whose performances are similar to those of pristine P25.

Zobrazit více v PubMed

Nakata, K., & Fujishima, A. (2012). TiO DOI

Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531–3555. https://doi.org/10.1016/j.jece.2017.07.080 DOI

Zouzelka, R., & Rathousky, J. (2017). Photocatalytic abatement of NO DOI

Sadanaga, Y., Matsumoto, J., & Kajii, Y. (2003). Photochemical reactions in the urban air: Recent understandings of radical chemistry. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(1), 85–104. https://doi.org/10.1016/s1389-5567(03)00006-6 DOI

Zaleska-Medynska, A. (2008). Doped-TiO DOI

Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO DOI

Tsang, C. H. A., Li, K., Zeng, Y. X., Zhao, W., Zhang, T., Zhan, Y. J., Xie, R. J., Leung, D. Y. C., & Huang, H. B. (2019). Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International, 125, 200–228. https://doi.org/10.1016/j.envint.2019.01.015 DOI

Mei, Q. F., Zhang, F. Y., Wang, N., Yang, Y., Wu, R. L., & Wang, W. (2019). TiO DOI

Thayne, I., Elgaid, K., & Ternent, G. (2001). Devices and fabrication technology. In I. D. Robertson & S. Lucyszyn (Eds.), RFIC and MMIC Design and Technology (pp. 40–41). IET.

Suchanek, J., Vaneckova, E., Dostal, M., Mikyskova, E., Brabec, L., Zouzelka, R., & Rathousky, J. (2022). Methodology for simultaneous analysis of photocatalytic deNO(x) products. Catalysts, 12(6), 9. https://doi.org/10.3390/catal12060661 DOI

Chen, S. F., Chen, L., Gao, S., & Cao, G. Y. (2005). The preparation of coupled WO DOI

Liao, S. J., Huang, D. G., Yu, D. H., Su, Y. L., & Yuan, G. Q. (2004). Preparation and characterization of ZnO/TiO DOI

Chang, W., Zhang, M. J., Ren, X. S., & Miller, A. (2017). Synthesis and Photocatalytic Activity of Monolithic Fe DOI

Majzlan, J., Grevel, K. D., & Navrotsky, A. (2003). Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). American Mineralogist, 88(5–6), 855–859. https://doi.org/10.2138/am-2003-5-614 DOI

Lee, S., & Xu, H. F. (2016). Size-dependent phase map and phase transformation kinetics for nanometric iron(III) oxides (γ → ε → α pathway). Journal of Physical Chemistry C, 120(24), 13316–13322. https://doi.org/10.1021/acs.jpcc.6b05287 DOI

Devi, L. G., Murthy, B. N., & Kumar, S. G. (2010). Photocatalytic activity of TiO DOI

Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536–551. https://doi.org/10.1016/j.rser.2017.08.020 DOI

Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178. https://doi.org/10.1016/j.jphotochemrev.2011.02.001 DOI

Zanatta, A. R. (2019). Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Scientific Reports, 9, 12. https://doi.org/10.1038/s41598-019-47670-y DOI

Ali, A. M., Sayed, M. A., Algarni, H., Ganesh, V., Aslam, M., Ismail, A. A., & El-Bery, H. M. (2021). Synthesis, characterization and photoelectric properties of Fe DOI

Rose, A. (1955). Space-charge-limited currents in solids. Physical Review, 97(6), 1538–1544. https://doi.org/10.1103/PhysRev.97.1538 DOI

Dhara, S., & Giri, P. K. (2011). Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Research Letters, 6, 8. https://doi.org/10.1186/1556-276x-6-504 DOI

Kim, S., Jeong, H. Y., Choi, S. Y., & Choi, Y. K. (2010). Comprehensive modeling of resistive switching in the Al/TiO DOI

Peng, H. Y., Li, G. P., Ye, J. Y., Wei, Z. P., Zhang, Z., Wang, D. D., Xing, G. Z., & Wu, T. (2010). Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms. Applied Physics Letters, 96(19), 3. https://doi.org/10.1063/1.3428365 DOI

Lu, W. H., Wong, L. M., Wang, S. J., & Zeng, K. Y. (2018). Effects of oxygen and moisture on the I-V characteristics of TiO DOI

Serpone, N. (2018). Heterogeneous photocatalysis and prospects of TiO DOI

Munuera, G., Rivesarnau, V., & Saucedo, A. (1979). Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO DOI

Kwon, Y. J., Ko, W. C., Kang, S., Kim, K. M., & Jeong, Y. K. (2020). Surface passivation of highly stable TiO DOI

Banisharif, A., Khodadadi, A. A., Mortazavi, Y., Firooz, A. A., Beheshtian, J., Agah, S., & Menbari, S. (2015). Highly active Fe DOI

Khasawneh, O. F. S., & Palaniandy, P. (2021). Removal of organic pollutants from water by Fe DOI

Cao, Y. Q., Zi, T. Q., Zhao, X. R., Liu, C., Ren, Q., Fang, J. B., Li, W. M., & Li, A. D. (2020). Enhanced visible light photocatalytic activity of Fe DOI

Wu, Q. P., & van de Krol, R. (2012). Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO DOI

Barroso, M., Pendlebury, S. R., Cowan, A. J., & Durrant, J. R. (2013). Charge carrier trapping, recombination and transfer in hematite (α-Fe DOI

Zhou, X., Wu, J., Li, Q. F., Qi, Y. F., Ji, Z., He, P., Qi, X. M., Sheng, P. F., Li, Q. W., & Ren, J. X. (2017). Improved electron-hole separation and migration in V DOI

Serpone, N., & Emeline, A. V. (2012). Semiconductor photocatalysis - past, present, and future outlook. Journal of Physical Chemistry Letters, 3(5), 673–677. https://doi.org/10.1021/jz300071j DOI

Lin, C. F., Wu, C. H., & Onn, Z. N. (2008). Degradation of 4-chlorophenol in TiO DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...