Composite TiO2-based photocatalyst with enhanced performance
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-12109S
Grantová Agentura České Republiky
19-21801S
Grantová Agentura České Republiky
LM2018124
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001821
Ministerstvo Školství, Mládeže a Tělovýchovy
MSM200402101
Akademie Věd České Republiky
Strategy AV21 No. 23
Akademie Věd České Republiky
FV40209
Ministerstvo Průmyslu a Obchodu
PubMed
36152273
DOI
10.1007/s43630-022-00300-5
PII: 10.1007/s43630-022-00300-5
Knihovny.cz E-zdroje
- Klíčová slova
- Air purification, Composite photocatalyst, Metal oxides, NOx, Photocatalysis, Titanium dioxide,
- MeSH
- katalýza MeSH
- oxidy * MeSH
- titan * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxidy * MeSH
- titan * MeSH
- titanium dioxide MeSH Prohlížeč
TiO2 is the most studied photocatalyst because of its non-toxicity, chemical stability, and low cost. However, the problem of TiO2 is its low activity in the visible region of the spectrum. In this study, we focused on the preparation of composite photocatalytic materials with altered light absorption properties. TiO2 P25 and various metal oxides were mechanically joined by ball-milling and immobilized on glass plates. The prepared samples were evaluated based on their ability to degrade NO in gas phase. The formation of undesirable byproducts was also investigated. Four best performing composites were later chosen, characterized, and further evaluated under various conditions. According to their performance, the metal oxide additives can be divided into three groups. P25/Fe2O3 showed the most promising results-an increase in overall deNOx activity under modified ISO conditions and altered selectivity (less NO2 is formed) under both simulated outdoor and simulated indoor conditions. On the other hand, P25/V2O5 composite showed negligible photocatalytic activity. The intermediate group includes P25/WO3 and P25/ZnO photocatalysts, whose performances are similar to those of pristine P25.
Zobrazit více v PubMed
Nakata, K., & Fujishima, A. (2012). TiO DOI
Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531–3555. https://doi.org/10.1016/j.jece.2017.07.080 DOI
Zouzelka, R., & Rathousky, J. (2017). Photocatalytic abatement of NO DOI
Sadanaga, Y., Matsumoto, J., & Kajii, Y. (2003). Photochemical reactions in the urban air: Recent understandings of radical chemistry. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(1), 85–104. https://doi.org/10.1016/s1389-5567(03)00006-6 DOI
Zaleska-Medynska, A. (2008). Doped-TiO DOI
Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO DOI
Tsang, C. H. A., Li, K., Zeng, Y. X., Zhao, W., Zhang, T., Zhan, Y. J., Xie, R. J., Leung, D. Y. C., & Huang, H. B. (2019). Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International, 125, 200–228. https://doi.org/10.1016/j.envint.2019.01.015 DOI
Mei, Q. F., Zhang, F. Y., Wang, N., Yang, Y., Wu, R. L., & Wang, W. (2019). TiO DOI
Thayne, I., Elgaid, K., & Ternent, G. (2001). Devices and fabrication technology. In I. D. Robertson & S. Lucyszyn (Eds.), RFIC and MMIC Design and Technology (pp. 40–41). IET.
Suchanek, J., Vaneckova, E., Dostal, M., Mikyskova, E., Brabec, L., Zouzelka, R., & Rathousky, J. (2022). Methodology for simultaneous analysis of photocatalytic deNO(x) products. Catalysts, 12(6), 9. https://doi.org/10.3390/catal12060661 DOI
Chen, S. F., Chen, L., Gao, S., & Cao, G. Y. (2005). The preparation of coupled WO DOI
Liao, S. J., Huang, D. G., Yu, D. H., Su, Y. L., & Yuan, G. Q. (2004). Preparation and characterization of ZnO/TiO DOI
Chang, W., Zhang, M. J., Ren, X. S., & Miller, A. (2017). Synthesis and Photocatalytic Activity of Monolithic Fe DOI
Majzlan, J., Grevel, K. D., & Navrotsky, A. (2003). Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). American Mineralogist, 88(5–6), 855–859. https://doi.org/10.2138/am-2003-5-614 DOI
Lee, S., & Xu, H. F. (2016). Size-dependent phase map and phase transformation kinetics for nanometric iron(III) oxides (γ → ε → α pathway). Journal of Physical Chemistry C, 120(24), 13316–13322. https://doi.org/10.1021/acs.jpcc.6b05287 DOI
Devi, L. G., Murthy, B. N., & Kumar, S. G. (2010). Photocatalytic activity of TiO DOI
Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536–551. https://doi.org/10.1016/j.rser.2017.08.020 DOI
Ohtani, B. (2010). Photocatalysis A to Z—What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11(4), 157–178. https://doi.org/10.1016/j.jphotochemrev.2011.02.001 DOI
Zanatta, A. R. (2019). Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination. Scientific Reports, 9, 12. https://doi.org/10.1038/s41598-019-47670-y DOI
Ali, A. M., Sayed, M. A., Algarni, H., Ganesh, V., Aslam, M., Ismail, A. A., & El-Bery, H. M. (2021). Synthesis, characterization and photoelectric properties of Fe DOI
Rose, A. (1955). Space-charge-limited currents in solids. Physical Review, 97(6), 1538–1544. https://doi.org/10.1103/PhysRev.97.1538 DOI
Dhara, S., & Giri, P. K. (2011). Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Research Letters, 6, 8. https://doi.org/10.1186/1556-276x-6-504 DOI
Kim, S., Jeong, H. Y., Choi, S. Y., & Choi, Y. K. (2010). Comprehensive modeling of resistive switching in the Al/TiO DOI
Peng, H. Y., Li, G. P., Ye, J. Y., Wei, Z. P., Zhang, Z., Wang, D. D., Xing, G. Z., & Wu, T. (2010). Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms. Applied Physics Letters, 96(19), 3. https://doi.org/10.1063/1.3428365 DOI
Lu, W. H., Wong, L. M., Wang, S. J., & Zeng, K. Y. (2018). Effects of oxygen and moisture on the I-V characteristics of TiO DOI
Serpone, N. (2018). Heterogeneous photocatalysis and prospects of TiO DOI
Munuera, G., Rivesarnau, V., & Saucedo, A. (1979). Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO DOI
Kwon, Y. J., Ko, W. C., Kang, S., Kim, K. M., & Jeong, Y. K. (2020). Surface passivation of highly stable TiO DOI
Banisharif, A., Khodadadi, A. A., Mortazavi, Y., Firooz, A. A., Beheshtian, J., Agah, S., & Menbari, S. (2015). Highly active Fe DOI
Khasawneh, O. F. S., & Palaniandy, P. (2021). Removal of organic pollutants from water by Fe DOI
Cao, Y. Q., Zi, T. Q., Zhao, X. R., Liu, C., Ren, Q., Fang, J. B., Li, W. M., & Li, A. D. (2020). Enhanced visible light photocatalytic activity of Fe DOI
Wu, Q. P., & van de Krol, R. (2012). Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO DOI
Barroso, M., Pendlebury, S. R., Cowan, A. J., & Durrant, J. R. (2013). Charge carrier trapping, recombination and transfer in hematite (α-Fe DOI
Zhou, X., Wu, J., Li, Q. F., Qi, Y. F., Ji, Z., He, P., Qi, X. M., Sheng, P. F., Li, Q. W., & Ren, J. X. (2017). Improved electron-hole separation and migration in V DOI
Serpone, N., & Emeline, A. V. (2012). Semiconductor photocatalysis - past, present, and future outlook. Journal of Physical Chemistry Letters, 3(5), 673–677. https://doi.org/10.1021/jz300071j DOI
Lin, C. F., Wu, C. H., & Onn, Z. N. (2008). Degradation of 4-chlorophenol in TiO DOI