• This record comes from PubMed

Land-use change alters the bacterial community structure, but not forest management

. 2023 Apr ; 68 (2) : 277-290. [epub] 20221022

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
Project Infraestructura 205945 Consejo Nacional de Ciencia y Tecnología (MX)

Links

PubMed 36273059
DOI 10.1007/s12223-022-01009-9
PII: 10.1007/s12223-022-01009-9
Knihovny.cz E-resources

Deforestation has a large impact on soil fertility, especially on steep slopes, but by applying sustainable management practices, local communities in Oaxaca (Mexico) have tried to avoid the most negative effects on the forest ecosystems they manage. In this study, the characteristics and bacterial community structure were investigated from soil sampled in triplicate (n = 3) with different land use, i.e., arable, natural forest, sustainable managed, and reforested soil. The pH was significantly higher in the arable (6.2) than in the forest soils (≤ 5.3), while the organic matter was > 2 times higher in the natural forest (80.4 g/kg) and sustainable managed soil (86.3 g/kg) than in the arable (36.8 g/kg) and cleared and reforested soil (39.3 g/kg). The higher organic matter content in the first two soils was due to leaf litter, absent in the other soils. The species richness (q = 0), the typical (q = 1) and dominant bacteria (q = 2) were not affected significantly by land use. The beta diversity, however, showed a significant effect of land use on species richness (p = 0.0029). Proteobacteria (40.135%) and Actinobacteria (20.15%) were the dominant bacterial phyla, and Halomonas (14.50%) and the Verrucomicrobia DA101 (3.39%) were the dominant genera. The bacterial communities were highly significantly different in soil with different land use considering the taxonomic level of genus and OTUs (p ≤ 0.003). It was found that the sustainable managed forest provided the local community with sellable wood while maintaining the soil organic matter content, i.e., sequestered C and without altering the bacterial community structure.

See more in PubMed

Abrams EM, Rue DJ (1988) The causes and consequences of deforestation among the prehistoric Maya. Human Ecol 16:377–395. https://doi.org/10.1007/BF00891649 DOI

Alcántara-Ayala I, Esteban-Chávez O, Parrot JF (2006) Landsliding related to land-cover change: a diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. CATENA 65:152–165. https://doi.org/10.1016/j.catena.2005.11.006 DOI

Anselmetti FS, Hodell DA, Ariztegui D, Brenner M, Rosenmeier MF (2007) Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35(10):915–918. https://doi.org/10.1130/G23834A.1 DOI

Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588. https://doi.org/10.1099/ijs.0.035097-0 PubMed DOI

Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70(6):3195–3204. https://doi.org/10.1128/AEM.70.6.3195-3204.2004 PubMed DOI PMC

Bai XX, Shi RJ, You YM, Sheng HF, Han SQ, Zhang Y (2015) Bacterial Community structure and diversity in soils of different forest ages and types in Bao-Tianman Forest, Henan Province, China. [Article in Chinese] Ying Yong Sheng Tai Xue Bao 26:2273–2281

Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43. https://doi.org/10.1128/MMBR.00019-15 PubMed DOI PMC

Breiman, L. (2012). Breiman and Cutler’s random forests for classification and regression. Package ‘randomForest’. Institute for Statistics and Mathematics, Vienna University of Economics and Business.

Butterly CR, Baldock JA, Tang C (2013) The contribution of crop residues to changes in soil pH under field conditions. Plant Soil 366:185–198. https://doi.org/10.1007/s11104-012-1422-1 DOI

Bouman OT, Curtin D, Campbell CA, Biederbeck VO, Ukrainetz H (1995) Soil acidification from long-term use of anhydrous ammonia and urea. Soil Sci Soc Am J 59:1488–1494. https://doi.org/10.2136/sssaj1995.03615995005900050039x DOI

Bremner JM (1996) Nitrogen-total. In: Sparks DL, Page Al, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Soil science society of America, American society of agronomy. Methods of soil analysis Part 3. Chemical methods, pp 1085–1121. https://doi.org/10.2136/sssabookser5.3.c37

Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. https://doi.org/10.1093/bioinformatics/btp636 PubMed DOI

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303 PubMed DOI PMC

Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L (2010) Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl Environ Microbiol 76:3685–3691. https://doi.org/10.1128/AEM.02726-09 PubMed DOI PMC

Chávez-Romero Y, Navarro-Noya YE, Reynoso-Martínez SC, Sarria-Guzmán Y, Govaerts B, Verhulst N, Dendooven L, Luna-Guido M (2016) 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil till Res 159:1–8. https://doi.org/10.1016/j.still.2016.01.007 DOI

Dahal B, NandaKafle G, Perkins L, Brözel VS (2017) Diversity of free-living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol Res 195:31–39. https://doi.org/10.1016/j.micres.2016.11.004 PubMed DOI

Dahnke WC, Whitney DA (1988) Measurement of soil salinity. In: Dahnke WC (ed) Recommended chemical soil test procedures for the North Central Region (North Dakota Agricultural Experiment Station, North Dakota Agricultural Experiment Station, Fargo, ND.), 32–34

Dawkins K, Esiobu N (2018) The invasive Brazilian pepper tree (Schinus terebinthifolius) is colonized by a root microbiome enriched with Alphaproteobacteria and unclassified Spartobacteria. Front Microbiol 3(9):876. https://doi.org/10.3389/fmicb.2018.00876 DOI

De la Cruz-Barrón M, Cruz-Mendoza A, Navarro-Noya YE, Ruiz-Valdiviezo VM, Ortíz-Gutiérrez D, Ramírez-Villanueva DA, Luna-Guido M, Thierfelder C, Wall PC, Verhulst N, Govaerts B, Dendooven L (2017) The bacterial community structure and dynamics of carbon and nitrogen when maize (Zea mays L.) and its neutral detergent fibre were added to soil from Zimbabwe with contrasting managements practices. Microb Ecol 73:135–152. https://doi.org/10.1007/s00248-016-0807-8 PubMed DOI

del Carmen Montero-Calasanz M, Göker M, Pötter G, Rohde M, Spröer C, Schumann P, Gorbushina AA, Klenk HP (2013) Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand. Ant Van Leeuwenhoek 104(2):207–216. https://doi.org/10.1007/s10482-013-9939-8

del Carmen Montero-Calasanz M, Hofner B, Göker M, Rohde M, Spröer C, Hezbri K, Gtari M, Schumann P, Klenk HP (2014) Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble. BioMed Res Int 914767. https://doi.org/10.1155/2014/914767

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461 PubMed DOI

FAO - Food and agriculture organization of the United Nations - Headquarters (2013) Forests and landslides: the role of trees and forests in the prevention of landslides and rehabilitation of landslide-affected areas in Asia, www.preventionweb.net/publications/view/53056

FAO - Food and agriculture organization of the United Nations - Headquarters (2019) Declining bee populations pose threat to global food security and nutrition.  https://www.fao.org/news/story/en/item/1194910/icode/

Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839 PubMed DOI

Flores-Rentería D, Sánchez-Gallen I, Morales-Rojas D, Larsen J, Álvarez-Sánchez J (2020) Changes in the abundance and composition of a microbial community associated with land use change in a Mexican tropical rain forest. J Soil Sci Plant Nutr 20:1144–1155. https://doi.org/10.1007/s42729-020-00200-6 DOI

Fusaro C, Sarria-Guzmán Y, Chávez-Romero YA, Luna-Guido M, Muñoz-Arenas LC, Dendooven L, Estrada-Torres A, Navarro-Noya YE (2019) Land use is the main driver of soil organic carbon spatial distribution in a high mountain ecosystem. PeerJ 7:e7897. https://doi.org/10.7717/peerj.7897 PubMed DOI PMC

Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis, Part 1. Madison, WI, American Society of Agronomy-Soil Science Society of America, Physical and mineralogical methods, pp 383–411

Gkorezis P, Bottos EM, Van Hamme JD, Thijs S, Rineau F, Franzetti A, Balseiro-Romero, M, Weyens N, Vangronsveld J (2015) Draft genome sequence of Arthrobacter sp. strain SPG23, a hydrocarbon-degrading and plant growth-promoting soil bacterium. Gen Announ 3(6): e01517–15.  https://doi.org/10.1128/genomeA.01517-15

Gloor G, Fernandes A, Macklaim J, Albert A, Links M, Quinn T, Wu JR, Wong RG, Lieng B (2019) ALDEx2 package: analysis of differential abundance taking sample variation into account. Version: 1.18.0 Date: 2019–10–25

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224. https://doi.org/10.3389/fmicb.2017.02224 PubMed DOI PMC

Goss-Souza D, Mendes LW, Borges CD, Baretta D, Tsai SM, Rodrigues J (2017) Soil microbial community dynamics and assembly under long-term land use change. FEMS Microb Ecol 93(10).  https://doi.org/10.1093/femsec/fix109

Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI, Young JP, James EK (2011) Legume-nodulating Betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Micr Inter 24(11):1276–1288. https://doi.org/10.1094/MPMI-06-11-0172 DOI

Hawley JG, Dymond JR (1988) How much do trees reduce landsliding? J Soil Water Cons 43:495–498

Heffner RA, Butler MJ, Reilly CK (1996) Pseudoreplication revisited. Ecology 77:2558–2562. https://doi.org/10.2307/2265754 DOI

INEGI: Instituto Nacional de Estadística y Geografía. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, Ixtlán de Juárez, Oaxaca Clave geoestadística 20042.  http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/20/20042.pdf

Jin L, Lee HG, Kim HS, Ahn CY, Oh HM (2013) Geodermatophilus soli sp. nov. and Geodermatophilus terrae sp. nov., two Actinobacteria isolated from grass soil. Int J Syst Evol Microbiol 63:2625–2629. https://doi.org/10.1099/ijs.0.048892-0 PubMed DOI

Kang MS, Hur M, Park SJ (2019) Rhizocompartments and environmental factors affect microbial composition and variation in native plants. J Microbiol 57:550–561. https://doi.org/10.1007/s12275-019-8646-1 PubMed DOI

Kanso S, Patel BK (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406. https://doi.org/10.1099/ijs.0.02348-0 PubMed DOI

Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744. https://doi.org/10.3389/fmicb.2016.00744 PubMed DOI PMC

Klute A, Cassel DK, Nielsen DR (1986) Field capacity and available water capacity. In: Klute A (ed) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Madison, WI: American Society of Agronomy-Soil Science Society of America, pp 901–926

Kolde R (2017) Package ‘pheatmap.’ Version: 1. Available at: http://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf

Kumar R, Verma H, Haider S, Bajaj A, Sood U, Ponnusamy K, Nagar S, Shakarad MN, Negi RK, Singh Y, Khurana JP, Gilbert JA, Lal R (2017) Comparative genomic analysis reveals habitat-specific genes and regulatory hubs within the genus Novosphingobium. mSystems 2(3):e00020–17. https://doi.org/10.1128/mSystems.00020-17

Li Q, Yan L, Ye L, Zhou J, Zhang B, Peng W, Zhang X, Li X (2018) Chinese black truffle (Tuber indicum) alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena. Front Microbiol 9:2202. https://doi.org/10.3389/fmicb.2018.02202 PubMed DOI PMC

Liu SL, Fu BJ, Lü YH, Chen LD (2002) Effects of reforestation and deforestation on soil properties in humid mountainous areas: a case study in Wolong Nature Reserve, Sichuan province, China. Soil Use Manag 18:376–380. https://doi.org/10.1111/j.1475-2743.2002.tb00255.x DOI

Lynn TM, Liu Q, Hu Y, Yuan H, Wu X, Khai AA, Wu J, Ge T (2017) Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil. Arch Microbiol 199(5):711–721. https://doi.org/10.1007/s00203-017-1347-4 PubMed DOI

Ma Z, Li L (2018) Measuring metagenome diversity and similarity with Hill numbers. Mol Ecol Res 18:1339–1355. https://doi.org/10.1111/1755-0998.12923 DOI

Mair P, Wilcox RR (2017) Robust statistical methods using WRS 2. Version: 0.9–2, Date 2017–04–29. https://CRAN.R-project.org/package=wrs2

Marchi E, Chung W, Visser R, Abbas D, Nordfjell T, Mederski PS, McEwan A, Brink M, Laschi A (2018) Sustainable Forest Operations (SFO): a new paradigm in a changing world and climate. Sci Total Environ 1(634):1385–1397. https://doi.org/10.1016/j.scitotenv.2018.04.084 DOI

Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346. https://doi.org/10.1099/00207713-50-1-337 PubMed DOI

Muñoz-Arenas LC, Fusaro C, Hernández-Guzmán M, Dendooven L, Estrada-Torres A, Navarro-Noya YE (2020) Soil microbial diversity drops with land-use change in a high mountain temperate forest: a metagenomics survey. Environ Microbiol Rep 12(2):185–194 PubMed DOI

Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, Raes J, van Veen JA, Kuramae EE (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448. https://doi.org/10.1111/mec.13172 PubMed DOI

Negrete-Yankelevich S, Cultid-Medina CA, Fuentes-Pangtay T, Álvarez-Sánchez J, Cram S, García-Pérez JA, Fragoso C, Martinez-Romero E, Varela-Fregoso L, Bueno-Villegas J, Barois-Boullard IF (2020) Disentangling the effects of legacies from those of current land use on soil physical, chemical and biodiversity properties in southeast Mexico. Appl Soil Ecol 153:103578. https://doi.org/10.1016/j.apsoil.2020.103578 DOI

Obermeier MM, Gnädinger F, Durai Raj AC, Obermeier WA, Schmid CAO, Balàzs H, Schröder P (2020) Under temperate climate, the conversion of grassland to arable land affects soil nutrient stocks and bacteria in a short term. Sci Total Environ 10(703):135494. https://doi.org/10.1016/j.scitotenv.2019.135494 DOI

Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2019) Vegan package in R: community ecology package. Version 2.5–6. Packaged: 2019–08–31. Available at: cran.r-project.org/web/packages/vegan/vegan.pdf

Pascault N, Cécillon L, Mathieu O, Hénault C, Sarr A, Lévêque J, Farcy P, Ranjard L, Maron PA (2010) In situ dynamics of microbial communities during decomposition of wheat, rape, and alfalfa residues. Microb Ecol 60(4):816–828. https://doi.org/10.1007/s00248-010-9705-9707 PubMed DOI

Platero R, James EK, Rios C, Iriarte A, Sandes L, Zabaleta M, Battistoni F, Fabiano E (2016) Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl Environ Microb 82(11):3150–3164. https://doi.org/10.1128/AEM.04142-15 DOI

Pocknee S, Sumner ME (1997) Cation and nitrogen contents of organic matter determine its soil liming potential. Soil Sci Soc Am J 61:86–92. https://doi.org/10.2136/sssaj1997.03615995006100010014x DOI

Pop Ristova P, Bienhold C, Wenzhöfer F, Rossel PE, Boetius A (2017) Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PLoS ONE 12(1):e0169906. https://doi.org/10.1371/journal.pone.0169906 PubMed DOI PMC

Quinn T, Lovell D, Erb I, Bilgrau A, Gloor G, Moore R (2019) propr package: calculating proportionality between vectors of compositional data. Version: 4.2.6 Date/Publication: 2019–12–16 06:10:10 UTC

R Core Team (2013) R: a language and environment for statistical computing.

Rebollar EA, Sandoval-Castellanos E, Roessler K, Gaut BS, Alcaraz LD, Benítez M, Escalante AE (2017) Seasonal changes in a maize-based polyculture of central Mexico reshape the co-occurrence networks of soil bacterial communities. Front Microbiol 8:2478. https://doi.org/10.3389/fmicb.2017.02478 PubMed DOI PMC

Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 9:944–953. https://doi.org/10.1111/j.1462-2920.2006.01216.x

Rilling JI, Acuña JJ, Sadowsky MJ, Jorquera MA (2018) Putative nitrogen-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an Andisol from Southern Chile. Front Microb 9:2710. https://doi.org/10.3389/fmicb.2018.02710 DOI

Ríos-Altamirano A, Cecilia Alfonso-Corrado C, Aguirre-Hidalgo V, Ángeles-Pérez G, Mendoza-Díaz MM, Rodríguez-Rivera V, Roldán-FelixE C-T (2016) Abundance and distribution of the genus Pinus in Capulálpam de Méndez, Sierra Juárez, Oaxaca (In Spanish). Madera y Bosques 22(3):61–74 DOI

Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M, Marra PP. Decline of the North American avifauna. Science. 2019 Oct 4;366(6461):120–124.  https://doi.org/10.1126/science.aaw1313 .

Sánchez-Marañón M, Miralles I, Aguirre-Garrido JF, Anguita-Maeso M, Millán V, Ortega R, García-Salcedo JA, Martínez-Abarca F, Soriano M (2017) Changes in the soil bacterial community along a pedogenic gradient. Sci Rep 7(1):14593. https://doi.org/10.1038/s41598-017-15133-x PubMed DOI PMC

Saynes V, Etchevers JD, Galicia L, Hidalgo C, Campo J (2012) Soil carbon dynamics in high-elevation temperate forests of Oaxaca (Mexico): thinning and rainfall effects. Bosque (valdivia) 33:3–11. https://doi.org/10.4067/S0717-92002012000100001 DOI

Singh R, Dubey AK (2018) Diversity and applications of endophytic Actinobacteria of plants in special and other ecological niches. Front Microb 9:1767. https://doi.org/10.3389/fmicb.2018.01767 DOI

Stackebrandt E, Murray RGE, Truper HG (1988) Proteobacteria classis nov, a name for the phylogenetic taxon that includes the Purple bacteria and their relatives. Int J Syst Bact 38(3):321–325. https://doi.org/10.1099/00207713-38-3-321 DOI

Sun Y, Luo C, Jiang L, Song M, Zhang D, Li J, Li Y, Ostle NJ, Zhang G (2020) Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China. Sci Total Environ 712:136526. https://doi.org/10.1016/j.scitotenv.2020.136526 PubMed DOI

Szoboszlay M, Dohrmann AB, Poeplau C, Don A, Tebbe CC (2017) Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. FEMS Microbiol Ecol 93(12): https://doi.org/10.1093/femsec/fix146

Thomas GW, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Soil pH and soil acidity. In: Sparks DL, Page Al, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis. Part 3-chemical method, Madison, WI: American Society of Agronomy. Soil Science Society of America, pp 475–490.  https://doi.org/10.2136/sssabookser5.3.c37

Thompson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula E, Buée M, Mougel C, Ranjard L, Van Veen JA, Martin F, Bailey MJ (2015) Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol Biochem 88:403–413. https://doi.org/10.1016/j.soilbio.2015.06.012 DOI

Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J 12:1072–1083. https://doi.org/10.1038/s41396-018-0082-4 PubMed DOI PMC

van Klink R, Bowler DE, Gongalsky KB, Swengel AB, Gentile A, Chase JM (2020) Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368(6489):417–420. https://doi.org/10.1126/science.aax9931.Erratum.In:Science.2020Oct23;370(6515) PubMed DOI

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267. https://doi.org/10.1128/AEM.00062-07 DOI

Zhang BH, Salam N, Cheng J, Li HQ, Yang JY, Zha DM, Zhang YQ, Ai MJ, Hozzein WN, Li WJ (2016) Modestobacter lacusdianchii sp. nov., a phosphate-solubilizing actinobacterium with ability to promote microcystis growth. PloS One 11(8):e0161069. https://doi.org/10.1371/journal.pone.0161069

Zhang XJ, Zhang J, Yao Q, Feng GD, Zhu HH (2019) Microvirga flavescens sp. nov., a novel bacterium isolated from forest soil and emended description of the genus Microvirga. Int J Syst Evol Microbiol 69(3):667–671.  https://doi.org/10.1099/ijsem.0.003189

Zhou G, Qiu X, Zhang J, Tao C (2019a) Effects of seaweed fertilizer on enzyme activities, metabolic characteristics, and bacterial communities during maize straw composting. Bioresour Technol 286:121375. https://doi.org/10.1016/j.biortech.2019.121375 PubMed DOI

Zhou M, Wang X, Ren X, Zhu B (2019b) Afforestation and deforestation enhanced soil CH PubMed DOI

Zimmer, K (2019) Birds are vanishing from North America.  https://www.nytimes.com/2019/09/19/science/bird-populations-america-canada.html

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...