• This record comes from PubMed

Aspects of self-regulated learning and their influence on the mathematics achievement of fifth graders in the context of four different proclaimed curricula

. 2022 ; 13 () : 963151. [epub] 20221011

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Metacognition is a part of the models of self-regulated learning. The consideration of a broader context resonates with a social cognitive perspective approach to learning which dominates the educational academic field with the theory of self-regulated learning. Metacognition is considered a crucial factor influencing mathematics achievement. Furthermore, the affective field including pupils' self-efficacy, interest and motivation are the phenomena involved in mathematical problem-solving. On the other hand, metacognitive knowledge and metacognitive regulations are not a regular part of mathematics education in the Czech Republic. The main aim of this study was to investigate the relation between pupils' attitude toward mathematics; metacognitive knowledge; self-efficacy and motivation; metacognitive monitoring; and their achievement in solving mathematical problems. All together 1,133 students of Grade 5 from four types of Czech schools participated in the study. There were traditional schools; schools teaching mathematics by genetic constructivism, i.e., Hejný's method; Montessori schools; and Dalton schools were involved. The assessed variables, namely relation to mathematics; metacognitive knowledge; self-efficacy and motivation; metacognitive monitoring; and mathematical achievement were used as an input to regression analysis. Item-response theory was used for assessing the performance of the students and demands of the tasks. The metacognitive monitoring was detected as the most significant predictor of mathematics achievement for higher- and lower-performing students as well as for the item with high and low demands. The study reveals how the different mathematics curricula (un)support the metacognitive processes involved in mathematical problem-solving. The information allows teachers to spend sufficient time with particular types of mathematics problems whose solutions is determined by activation of metacognitive processes. This demonstrates the importance of including the activities for development of metacognitive monitoring in mathematics education.

See more in PubMed

Ackerman R., Thompson V. A. (2017). Meta-reasoning: monitoring and control of thinking and reasoning. Trends Cogn. Sci. 21, 607–617. 10.1016/j.tics.2017.05.004 PubMed DOI

Akbuga E., Havan S. (2021). Motivation to study calculus: measuring student performance expectation, utility value and interest. Int. J. Math. Educ. Sci. Technol. 1–18. 10.1080/0020739X.2021.1931515 DOI

Annevirta T., Laakkonen E., Kinnunen R., Vauras M. (2007). Developmental dynamics of metacognitive knowledge and text comprehension skill in the first primary school years. Metacogn. Learn. 2, 21–39. 10.1007/s11409-007-9005-x DOI

Artelt C., Neuenhaus N. (2010). “Metacognition and performance,” in Schulische Lerngelegegegheheiten a Competence development: Festschrift für Jürgen Baumert, eds W. Bos, E. Klieme and O. Köller (Munster: Waxmann; ), 127–146.

Artigue M., Bosch M., Doorman M., Juhasz P., Kvasz L., Maass K. (2020). Inquiry based mathematics education and the development of learning trajectories. Teach. Math. Comput. Sci. 18, 63–89. 10.5485/TMCS.2020.0505 DOI

Bandura A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215. 10.1037/0033-295X.84.2.191 PubMed DOI

Bandura A. (1994). “Self-efficacy,” in Encyclopedia of Human Behavior, ed V. S. Ramachaudran (New York, NY: Academic Press; ), 71–81.

Bandura A. (1997). Self-Efficacy: The Exercise of Control. New York, NY: W.H. Freeman.

Bandura A. (2011). A social cognitive perspective on positive psychology. Int. J. Soc. Psychol. 26, 7–20. 10.1174/021347411794078444 DOI

Betz N.E., Hackett G. (1983). The relationship of mathematics self-efficacy judgements for immediate and delayed academic performances. J. Exper. Educ. 70, 133–162.

Boone H. N., Boone D. A. (2012). Analyzing Likert data. J. Extension 50, 1–5. Available online at: http://www.joe.org/joe/2012april/tt2p.shtml

Borkowski J. G., Chan L. K., Muthukrishna N. (2000). “A process-oriented model of metacognition: Links between motivation and executive functioning,” in Issues in the Measurement of Metacognition, eds G. Schraw and J. C. Impara (Lincoln, NE: Buros Institute of Mental Measurements; ), 1–41.

Brand A. G. (1985). Hot cognition: emotions and writing behavior. J. Adv. Composit. 6, 5–15.

Brown G. T. L., Peterson E. R., Yao E. S. (2016). Student conceptions of feedback: impact on self-regulation, self-efficacy, and academic achievement. Br. J. Educat. Psychol. 86, 606–629. 10.1111/bjep.12126 PubMed DOI

Burnham J. R. (2011). A Case Study of Mathematics Self-Efficacy in a Freshman Engineering Mathematics Course. Washington State University, Pullman, WA, United States.

Carr M. (2010). “The importance of metacognition for conceptual change and strategy use in mathematics,” in Metacognition, strategy use, and instruction, eds. H. S. Waters and W. Schneider (Guilford Press; ), 176–197.

Cera R., Mancini M., Antonietti A. (2013). Relationships between metacognition, self-efficacy and self-regulation in learning. J. Educ. Cult. Psychol. Stud. 4, 115–141. 10.7358/ecps-2013-007-cera DOI

Chan J. C. Y., Lam S.-F. (2010). Effects of different evaluative feedback on students' self-efficacy in learning. Instruct. Sci. 38, 37–58. 10.1007/s11251-008-9077-2 DOI

Chang Y.-L. (2015). Examining relationships among elementary mathematics teacher efficacy and their students' mathematics self-efficacy and achievement. Eurasia J. Math. Sci. Technol. Educ. 11, 1307–1320. 10.12973/eurasia.2015.1387a DOI

Chráska M. (1999). Didaktické testy. Brno: Paido.

Chytrý V., Medová J., Ríčan J., Škoda J. (2020). Relation between pupils' mathematical self-efficacy and mathematical problem solving in the context of the teachers' preferred pedagogies. Sustainability 12, 10215. 10.3390/su122310215 DOI

Chytrý V., Pešout O., Ríčan J. (2014). Preference metakognitivních strategií na pozadí úkolových situací v matematice u Žáku druhého stupně ZŠ. Ústí nad Labem: UJEP.

Cornoldi C., Carretti B., Drusi S., Tencati C. (2015). Improving problem solving in primary school students: the effect of a training programme focusing on metacognition and working memory. Br. J. Educ. Psychol. 85, 424–439. 10.1111/bjep.12083 PubMed DOI

Coutinho S. A., Neuman G. (2008). A model of metacognition, achievement goal orientation, learning style and self-efficacy. Learn. Environ. Res. 11, 131–151. 10.1007/s10984-008-9042-7 DOI

Cromley J. G., Azevedo R. (2006). Self-report of reading comprehension strategies: what are we measuring? Metacogn. Learn. 1, 229–247. 10.1007/s11409-006-9002-5 PubMed DOI

de Boer H., Donker A. S., Kostons D. D., van der Werf G. P. (2018). Long-term effects of metacognitive strategy instruction on student academic performance: a meta-analysis. Educ. Res. Rev. 24, 98–115. 10.1016/j.edurev.2018.03.002 DOI

Desoete A., Roeyers H., Buysse A. (2001). Metacognition and mathematical problem solving in grade 3. J. Learn. Disabil. 34, 435–447. 10.1177/002221940103400505 PubMed DOI

Dignath C., Buettner G., Langfeldt H.-P. (2008). How can primary school students learn self-regulated learning strategies most effectively?: a meta-analysis on self-regulation training programmes. Educ. Res. Rev. 3, 101–129. 10.1016/j.edurev.2008.02.003 DOI

Dougherty M. R., Sprenger A. (2006). The influence of improper sets of information on judgment: how irrelevant information can bias judged probability. J. Exp. Psychol. Gen. 135, 262–281. 10.1037/0096-3445.135.2.262 PubMed DOI

Drigas A., Mitsea E. (2020). The 8 pillars of metacognition. Int. J. Emerg. Technol. Learn. 15, 162–178. 10.3991/ijet.v15i21.14907 DOI

Drigas A., Mitsea E. (2021). 8 Pillars X 8 layers model of metacognition: educational strategies, exercises andtrainings. Int. J. Online Biomed. Eng. 17, 115–134. 10.3991/ijoe.v17i08.23563 DOI

Dunn O. J. (2004). Remember-know: a matter of confidence. Psychol. Rev. 111, 524–542. 10.1037/0033-295X.111.2.524 PubMed DOI

Efklides A. (2011). Interactions of metacognition with motivation and affect in self-regulated learning: the MASRL model. Educ. Psychol. 46, 6–25. 10.1080/00461520.2011.538645 DOI

Efklides A. (2019). Gifted students and self-regulated learning: the MASRL model and its implications for SRL. High Ability Stud. 30, 79–102. 10.1080/13598139.2018.1556069 DOI

Feldman D. B., Kubota M. (2015). Hope, self-efficacy, optimism, and academic achievement: distinguishing constructs and levels of specificity in predicting college grade-point average. Learn. Individ. Differ. 37, 210–216. 10.1016/j.lindif.2014.11.022 DOI

FEP . (2021). Framework Education Programme for Primary Education. Prague: Ministry of Education.

Finn B., Tauber S. K. (2015). When confidence is not a signal of knowing: how students' experiences and beliefs about processing fluency can lead to miscalibrated confidence. Educ. Psychol. Rev. 27, 567–586. 10.1007/s10648-015-9313-7 DOI

Flavell J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive–developmental inquiry. Am. Psychol. 34, 906. 10.1037/0003-066X.34.10.906 DOI

Flavell J. H., Wellman H. M. (1975). Metamemory. Minneapolis: Minesota University, Minneapolis Institute of Child Development.

Garofalo J., Lester F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. J. Res. Math. Educ. 16, 163–176. 10.2307/748391 DOI

González Castro P., Fernández Cueli M. S., Cabeza Soberón M. L., Álvarez García D., Rodríguez Pérez C. (2014). Improving basic math skills through integrated dynamic representation strategies. Psicothema. 26, 378–384. 10.7334/psicothema2013.284 PubMed DOI

Grizzle-Martin T. (2014). The Effect of Cognitive-and Metacognitive-Based Instruction on Problem Solving by Elementary Students With Mathematical Learning Difficulties. Minneapolis, MN: Walden University.

Hacker D. J., Bol L., Horgan D. D., Rakow E. A. (2000). Test prediction and performance in a classroom context. J. Educ. Psychol. 92, 160–170. 10.1037/0022-0663.92.1.160 DOI

Hecht C. A., Grande M. R., Harackiewicz J. M. (2021). The role of utility value in promoting interest development. Motiv. Sci. 7, 1–20. 10.1037/mot0000182 PubMed DOI PMC

Hong E. (2020). “Metacognition,” in Encyclopedia of Creativity (Third Edition), eds S. Pritzker and M. Runco (Oxford: Academic Press; ), 140–145. 10.1016/B978-0-12-809324-5.23619-5 DOI

Hornstra L., van der Veen I., Peetsma T. (2016). Domain-specificity of motivation: a longitudinal study in upper primary school. Learn. Individ. Differ. 51, 167–178. 10.1016/j.lindif.2016.08.012 DOI

Kasíková H. (1994). The Reform Is Done by the Teacher or Differentiation, Individualization, Cooperation in Teaching. Prague, Czech Republic: Association for Creative Drama.

Klauda S. L., Guthrie J. T. (2015). Comparing relations of motivation, engagement, and achievement among struggling and advanced adolescent readers. Read. Writ. 28, 239–269. 10.1007/s11145-014-9523-2 PubMed DOI PMC

Kramarski B., Mevarech Z. R. (2003). Enhancing mathematical reasoning in the classroom: the effects of cooperative learning and metacognitive training. Am. Educ. Res. J. 40, 281–310. 10.3102/00028312040001281 DOI

Krathwohl D. R., Anderson L. W. (2010). Merlin C. Wittrock and the revision of bloom's taxonomy. Educ. Psychol. 45, 64–65. 10.1080/00461520903433562 DOI

Lai Y., Zhu X., Chen Y., Li Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS ONE 10, e0130570. 10.1371/journal.pone.0130570 PubMed DOI PMC

Lara Nieto-Marquez N., Garcia-Sinausia S., Perez Nieto M. A. (2021). Links between motivation and metacognition and achievement in cognitive performance among primary school pupils. Ann. Psychol. 37, 51–60. 10.6018/analesps.383941 DOI

Leonesio R. J., Nelson T. O. (1990). Do different metamemory judgments tap the same underlying aspects of memory? J. Exp. Psychol. Learn. Mem. Cogn. 16, 464–470. 10.1037/0278-7393.16.3.464 PubMed DOI

Leopold C., Leutner D. (2002). “Der Einsatz von Lernstrategien in einer konkreten Lernsituation bei Sch?lern unterschiedlicher Jahrgangsstufen,” in Bildungsqualität von Schule: Schulische und außerschulische Bedingungen mathematischer, naturwissenschaftlicher und überfachlicher Kompetenzen, eds M. Prenzel and J. Doll (Weinheim: : Beltz; ), 240–258. 10.25656/01:3950 DOI

Li Q., Cho H., Cosso J., Maeda Y. (2021). Relations between students' mathematics anxiety and motivation to learn mathematics: a meta-analysis. Educ. Psychol. Rev. 33, 1017–1049. 10.1007/s10648-020-09589-z DOI

Likert R. (1932). A technique for the measurement of attitudes. Arch. Psychol. 22, 55–55.

Lind G., Sandmann A. (2003). Learn learning strategies and domains. J. Psychol. 211, 171–192. 10.1026//0044-3409.211.4.171 DOI

Maurer T. J., Pierce H. R. (1998). A comparison of Likert scale and traditional measures of self-efficacy. J. Appl. Psychol. 83, 324. 10.1037/0021-9010.83.2.324 DOI

McCormick C. B. (2003). “Metacognition and learning,” in Handbook of Psychology: Volume 7 – Eduacational Psychology, ed W. M. R. G. E. M. I. B. Weiner (Hoboken, NJ: John Wiley and Sons, Inc.), 79–102. 10.1002/0471264385.wei0705 DOI

Mean J., Maciejewski W. (2021). Peer motivation: getting through math together. J. Humanist. Math. 11, 113–135. 10.5642/jhummath.202101.08 DOI

Meneghetti C., De Beni R., Cornoldi C. (2007). Strategic knowledge and consistency in students with good and poor study skills. Eur. J. Cogn. Psychol. 19, 628–649. 10.1080/09541440701325990 DOI

Metcalfe J., Dunlosky J. (2009). Metacognition: A Textbook for Cognitive, Educational, Life Span and Applied Psychology. Thousand Oaks, CA: Sage.

Metcalfe J., Finn B. (2008). Evidence that judgments of learning are causally related to study choice. Psychonom. Bull. Rev. 15, 174–179. 10.3758/PBR.15.1.174 PubMed DOI

Miele D. B., Son L. K., Metcalfe J. (2013). Children's naive theories of intelligence influence their metacognitive judgments. Child Dev. 84, 1879–1886. 10.1111/cdev.12101 PubMed DOI

Mohamed Mohamed Bayoumy H., Alsayed S. (2021). Investigating relationship of perceived learning engagement, motivation, and academic performance among nursing students: a multisite study. Adv. Med. Educ. Pract. 12, 351–369. 10.2147/AMEP.S272745 PubMed DOI PMC

Montague M. (2008). Self-regulation strategies to improve mathematical problem solving for students with learning disabilities. Learn. Disabil. Quart. 31, 37–44. 10.2307/30035524 DOI

Muncer G., Higham P. A., Gosling C. J., Cortese S., Wood-Downie H., Hadwin J. A. (2022). A Meta-Analysis Investigating the Association Between Metacognition and Math Performance in Adolescence. Educ. Psychol. Rev. 34, 301–334. 10.1007/s10648-021-09620-x DOI

Namkung J. M., Peng P., Lin X. (2019). The relation between mathematics anxiety and mathematics performance among school-aged students: a meta-analysis. Rev. Educ. Res. 89, 459–496. 10.3102/0034654319843494 DOI

Nelson T. O. (1996). Consciousness and metacognition. Am. Psychol. 51, 102. 10.1037/0003-066X.51.2.102 DOI

Nelson T. O., Narens L. (1990). “Metamemory: a theoretical framework and new findings,” in Psychology of Learning and Motivation, ed G. H. Bower (Cambridge, MA: Academic Press; ), 125–173. 10.1016/S0079-7421(08)60053-5 DOI

Neuenhaus N. (2011). Metakognition und Leistung. Eine Längschnittuntersuchung in den Bereichen Lesen und Englisch bei Schülerinnen und Schülern der fünften und sechsten Jahrgangsstufe.

Nietfeld J. L., Cao L., Osborne J. W. (2005). Metacognitive monitoring accuracy and student performance in the postsecondary classroom. J. Exp. Educ. 74, 7–28. Available online at: http://www.jstor.org/stable/20157410

Nietfeld J. L., Enders C. K., Schraw G. (2006). A monte carlo comparison of measures of relative and absolute monitoring accuracy. Educ. Psychol. Meas. 66, 258–271. 10.1177/0013164404273945 DOI

Pajares F. (2005). “Gender differences in mathematics self-efficacy beliefs,” in Gender Differences in Mathematics: An Integrative Psychological Approach, eds A. M. Gallagher and J. C. Kaufman (Cambridge: Cambridge University Press; ), 294–315.

Pajares F., Graham L. (1999). Self-efficacy, motivation constructs, and mathematics performance of entering middle school students. Contemp. Educ. Psychol. 24, 124–139. 10.1006/ceps.1998.0991 PubMed DOI

Panadero E. (2017). A review of self-regulated learning: six models and four directions for research. Front. Psychol. 8422. 10.3389/fpsyg.2017.00422 PubMed DOI PMC

Parhiala P., Torppa M., Vasalampi K., Eklund K., Poikkeus A.-M., Aro T. (2018). Profiles of school motivation and emotional well-being among adolescents: associations with math and reading performance. Learn. Individ. Differ. 61, 196–204. 10.1016/j.lindif.2017.12.003 DOI

Polya G. (1957). How to Solve It: A New Aspect of Mathematical Methods. New York, NY: Doubleday.

Pressley M., Levin J. R., Ghatala E. S., Ahmad M. (1987). Test monitoring in young grade school children. J. Exp. Child Psychol. 43, 96–111. 10.1016/0022-0965(87)90053-1 DOI

Prins F. J., Veenman M. V. J., Elshout J. J. (2006). The impact of intellectual ability and metacognition on learning: new support for the threshold of problematicity theory. Learn. Instruct. 16, 374–387. 10.1016/j.learninstruc.2006.07.008 DOI

Prucha J. (2012). Alternativní školy a inovace ve vzdělávání [Alternative schools and innovations in education]. Prague, Czech Republic: Portál.

Puustinen M., Pulkkinen L. (2001). Models of self-regulated learning: a review. Scand. J. Educ. Res. 45, 269–286. 10.1080/00313830120074206 DOI

Rhodes M. G., Kelley C. M. (2005). Executive processes, memory accuracy, and memory monitoring: an aging and individual difference analysis. J. Mem. Lang. 52, 578–594. 10.1016/j.jml.2005.01.014 DOI

Ríčan J., Chytrý V. (2016). Metakognice a metakognitivní strategie jako teoretické a výzkumné konstrukty a jejich uplatnění v moderní pedagogické praxi. Ústí nad Labem: UJEP.

Ríčan J., Chytrý V. (2020). The level of metacognitive monitoring with learners at higher elementary grade in processing informational texts in the subject of science depending on the type of educational curriculum. EduPort 4, 11–24. 10.21062/edp.2020.006 DOI

Risemberg R., Zimmerman B. J. (1992). Self-regulated learning in gifted students. Roeper Rev. 15, 98–101. 10.1080/02783199209553476 PubMed DOI

Rod A. (2012). Likertovo škálování. E-Logos Electron. J. Philos. 13, 2–14. 10.18267/j.e-logos.327 DOI

Roderer T., Roebers C. M. (2010). Explicit and implicit confidence judgments and developmental differences in metamemory: an eye-tracking approach. Metacogn. Learn. 5, 229–250. 10.1007/s11409-010-9059-z DOI

Roebers C. M., Krebs S. S., Roderer T. (2014). Metacognitive monitoring and control in elementary school children: their interrelations and their role for test performance. Learn. Individ. Differ. 29, 141–149. 10.1016/j.lindif.2012.12.003 DOI

Rose S. (2011). Academic success of nursing students: does motivation matter? Teach. Learn. Nurs. 6, 181–184. 10.1016/j.teln.2011.05.004 DOI

Rozencwajg P. (2003). Metacognitive factors in scientific problem-solving strategies. Eur. J. Psychol. Educ. 18, 281–294. 10.1007/BF03173249 DOI

Samuelstuen M. S., Bråten I. (2007). Examining the validity of self-reports on scales measuring students' strategic processing. Br. J. Educ. Psychol. 77, 351–378. 10.1348/000709906X106147 PubMed DOI

Schneider W. (2008). The development of metacognitive knowledge in children and adolescents: major trends and implications for education. Mind Brain Educ. 2, 114–121. 10.1111/j.1751-228X.2008.00041.x PubMed DOI

Schneider W., Artelt C. (2010). Metacognition and mathematics education. ZDM 42, 149–161. 10.1007/s11858-010-0240-2 DOI

Schneider W., Löffler E. (2016). “The development of metacognitive knowledge in children and adolescents,” in The Oxford Handbook of Metamemory, eds. T. J. Perfect and B. L. Schwartz (New York, NY, US: Oxford University Press; ), 491–518. 10.1093/oxfordhb/9780199336746.013.10 DOI

Schoenfeld A. H. (1992). “Learning to think mathematically: problem solving, metacognition, and sense making in mathematics,” in Handbook of Research on Mathematics Teaching and Learning, ed D. Grouws (New York, NY: Macmillan; ), 334–370.

Schraw G. (1994). The effect of metacognitive knowledge on local and global monitoring. Contemp. Educ. Psychol. 19, 143–154. 10.1006/ceps.1994.1013 PubMed DOI

Schraw G. (2009). A conceptual analysis of five measures of metacognitive monitoring. Metacogn. Learn. 4, 33–45. 10.1007/s11409-008-9031-3 DOI

Schunk D. H., Meece J. L. (2006). “Self-efficacy development in adolescence,” in Self-Efficacy Beliefs of Adolescents, eds F. Pajares and T. Urdan (Charlotte, NC: Information Age; ), 71–96.

Skinner E. A., Pitzer J. R. (2012). “Developmental dynamics of student engagement, coping, and everyday resilience,” in Handbook of Research on Student Engagement, eds S. L. Christenson, A. L., and C. Wylie (Boston, MA: Springer US; ), 21–44. 10.1007/978-1-4614-2018-7_2 DOI

Smetáčková I., Vozková A. (2016). Matematická self-efficacy a její měrení v pruběhu základní školy. E Psychol. 10, 18–33. Available online at: http://e-psycholog.eu/pdf/smetackova_vozkova.pdf

Soenens B., Vansteenkiste M. (2005). Antecedents and outcomes of self-determination in 3 life domains: the role of parents' and teachers' autonomy support. J. Youth Adolesc. 34, 589–604. 10.1007/s10964-005-8948-y DOI

Sperling R. A., Howard B. C., Miller L. A., Murphy C. (2002). Measures of children's knowledge and regulation of cognition. Contemp. Educ. Psychol. 27, 51–79. 10.1006/ceps.2001.1091 PubMed DOI

Swanson H. L. (1990). Influence of metacognitive knowledge and aptitude on problem solving. J. Educ. Psychol. 82, 306. 10.1037/0022-0663.82.2.306 PubMed DOI

Swanson H. L. (1992). The relationship between metacognition and problem solving in gifted children. Roeper Rev. 15, 43–48. 10.1080/02783199209553457 DOI

Tavakol M., Dennick R. (2011). Making sense of Cronbach's alpha. Int. J. Med. Educ. 2, 53–55. 10.5116/ijme.4dfb.8dfd PubMed DOI PMC

Unrau N. J., Rueda R., Son E., Polanin J. R., Lundeen R. J., Muraszewski A. K. (2018). Can reading self-efficacy be modified? A meta-analysis of the impact of interventions on reading self-efficacy. Rev. Educ. Res. 88, 167–204. 10.3102/0034654317743199 DOI

Van der Stel M., Veenman M. V. J., Deelen K., Haenen J. (2010). The increasing role of metacognitive skills in math: a cross-sectional study from a developmental perspective. ZDM 42, 219–229. 10.1007/s11858-009-0224-2 DOI

Veenman M. V. J., Kok R., Blöte A. W. (2005). The relation between intellectual and metacognitive skills in early adolescence. Instruct. Sci. 33, 193–211. 10.1007/s11251-004-2274-8 DOI

Veenman M. V. J., Van Hout-Wolters B. H. A. M., Afflerbach P. (2006). Metacognition and learning: conceptual and methodological considerations. Metacogn. Learn. 1, 3–14. 10.1007/s11409-006-6893-0 DOI

Vickers A. J. (1999). Comparison of an ordinal and a continuous outcome measure of muscle soreness. Int. J. Technol. Assess. Health Care 15, 709–716. 10.1017/S0266462399154102 PubMed DOI

Vo V. A., Li R., Kornell N., Pouget A., Cantlon J. F. (2014). Young children bet on their numerical skills:metacognition in the numerical domain. Psychol. Sci. 25, 1712–1721. 10.1177/0956797614538458 PubMed DOI PMC

von der Linden N., Roebers C. M. (2006). Developmental changes in uncertainty monitoring during an event recall task. Metacogn. Learn. 1, 213–228. 10.1007/s11409-006-9001-6 DOI

Wigfield A., Cambria J. (2010). Students' achievement values, goal orientations, and interest: definitions, development, and relations to achievement outcomes. Dev. Rev. 30, 1–35. 10.1016/j.dr.2009.12.001 DOI

Williams D. M., Rhodes R. E. (2016). The confounded self-efficacy construct: conceptual analysis and recommendations for future research. Health Psychol. Rev. 10, 113–128. 10.1080/17437199.2014.941998 PubMed DOI PMC

Winne P., Hadwin A. (1998). “Studying as self-regulated learning,” in Metacognition in Educational Theory and Practice, eds D. Hacker, J. Dunlosky, and A. Graesser (Mahwah, NJ: Lawrence Erlbaum; ), 277–304.

Winne P. H. (2018). “Cognition and metacognition within self-regulated learning,” in Handbook of Self-Regulation of Learning and Performance, 2nd Edn., eds D. H. Schunk and J. A. Greene (New York, NY, US: Routledge/Taylor and Francis Group; ), 36–48. 10.4324/9781315697048-3 DOI

Winne P. H., Azevedo R. (2014). “Metacognition,” in The Cambridge Handbook of the Learning Sciences, 2nd Edn. (New York, NY, US: Cambridge University Press; ), 63–87. 10.1017/CBO9781139519526.006 DOI

Wirth J., Leutner D. (2008). Self-regulated learning as a competence: implications of theoretical models for assessment methods. Zeitschrift für Psychol. 216, 102–110. 10.1027/0044-3409.216.2.102 DOI

Zhang J., Zhao N., Kong Q. P. (2019). The relationship between math anxiety and math performance: a meta-analytic investigation. Front. Psychol. 10, 1613. 10.3389/fpsyg.2019.01613 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...