On the track of intramembrane clippers: the SPPL2a/b proteases caught in the act in animal models
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36310421
DOI
10.1111/febs.16663
Knihovny.cz E-zdroje
- Klíčová slova
- SNARE, intramembrane protease, proteolysis, signal peptide peptidase-like, trafficking,
- MeSH
- aspartátové endopeptidasy * metabolismus MeSH
- membránové proteiny * genetika metabolismus MeSH
- modely u zvířat MeSH
- myši MeSH
- proteolýza MeSH
- sekretasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aspartátové endopeptidasy * MeSH
- membránové proteiny * MeSH
- sekretasy MeSH
- SPPL2a protein, mouse MeSH Prohlížeč
In this issue, Ballin et al. report on their analysis of the substrate repertoire of SPPL2a and b intramembrane proteases. Based on the previous studies of their closest homologues, SPPL2c, SPPL3 and SPP, the authors hypothesized that SPPL2a/b proteases may cleave a subset of SNARE proteins. Indeed, four R-SNARE proteins, VAMP1, 2, 3 and 4, were cleaved by SPPL2a/b, both in overexpression assays and at endogenous levels. These findings have been validated by analysis of SPPL2a/b double knock-out mice tissues, which implicates these proteases in the regulation of SNARE protein turnover in vivo. The study of Ballin et al. also provides material for future studies of factors determining substrate specificity of SPPLs, as they cleave different subsets of the tail-anchored SNARE proteins. Comment on: https://doi.org/10.1111/febs.16610.
Zobrazit více v PubMed
Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J. 2013;280:1579-603.
Grigorenko AP, Moliaka YK, Korovaitseva GI, Rogaev EI. Novel class of polytopic proteins with domains associated with putative protease activity. Biochem. 2002;67:826-34.
Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science. 2002;296:2215-8.
Mentrup T, Cabrera-Cabrera F, Fluhrer R, Schröder B. Physiological functions of SPP/SPPL intramembrane proteases. Cell Mol Life Sci. 2020;77:2959-79.
Friedmann E, Lemberg MK, Weihofen A, Dev KK, Dengler U, Rovelli G, et al. Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins. J Biol Chem. 2004;279:50790-8.
Kuhn PH, Voss M, Haug-Kröper M, Schröder B, Scheperse U, Bräse S, et al. Secretome analysis identifies novel signal peptide peptidase-like 3 (Sppl3) substrates and reveals a role of Sppl3 in multiple golgi glycosylation pathways. Mol Cell Proteomics. 2015;14:1584-98.
Hüttl S, Helfrich F, Mentrup T, Held S, Fukumori A, Steiner H, et al. Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem J. 2016;473:1405-22.
Mentrup T, Fluhrer R, Schröder B. Latest emerging functions of SPP/SPPL intramembrane proteases. Eur J Cell Biol. 2017;96:372-82.
Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell. 2008;134:634-45.
Guna A, Volkmar N, Christianson JC, Hegde RS. The ER membrane protein complex is a transmembrane domain insertase. Science. 2018;359:470-3.
Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature. 1998;395:347-53.
Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ, Cheng Y, et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature. 2015;518:61-7.
Ballin M, Griep W, Patel M, Karl M, Mentrup T, Rivera-Monroy J, et al. The intramembrane proteases SPPL2a and SPPL2b regulate the homeostasis of selected SNARE proteins. FEBS J. 2022;290:2320-37.