• This record comes from PubMed

Anaerobic conditions are a major influence on Candida albicans chlamydospore formation

. 2023 Apr ; 68 (2) : 321-324. [epub] 20221123

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 36418845
DOI 10.1007/s12223-022-01018-8
PII: 10.1007/s12223-022-01018-8
Knihovny.cz E-resources

Candidiasis now represents the fourth most frequent nosocomial infection both in the USA and worldwide. Candida albicans is an increasingly common threat to human health as a consequence of AIDS, steroid therapy, organ and tissue transplantation, cancer therapy, broad-spectrum antibiotics, and other immune defects. Unfortunately, these infections carry unacceptably high morbidity, mortality rates and important economic repercussions (estimated total direct cost of approximately 2 billion dollars in 1998 in US hospitals alone). This pathogen can grow both in yeast and filamentous forms and the pathogenic potential of C. albicans is intimately related to certain key processes including filamentation. Chlamydospores are considered to be a dormant form of C. albicans that remain understudied. Chlamydospores have been widely used as a diagnostic tool to separate C. albicans and C. dubliniensis from other Candida species. More recently, media have been developed that use chlamydopsore formation to separate C. albicans and C. dubliniensis from each other. Chlamydospore formation can be stimulated by hypoxic conditions but only on limited specific media types. Here, we show that anaerobic conditions are enough to drive chlamydospore formation in C. albicans on the surface of nutrient-rich agar.

See more in PubMed

Al Mosaid A, Sullivan DJ, Coleman DC (2003) Differentiation of Candida dubliniensis from Candida albicans on Pal’s agar. J Clin Microbiol 41:4787–4789. https://doi.org/10.1128/JCM.41.10.4787-4789.2003 PubMed DOI PMC

Banerjee SN, Emori TG, Culver DH et al (1991) Secular trends in nosocomial primary bloodstream infections in the United States, 1980–1989. National Nosocomial Infections Surveillance System. Am J Med 91:86S-89S. https://doi.org/10.1016/0002-9343(91)90349-3 PubMed DOI

Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109. https://doi.org/10.1126/science.277.5322.105 PubMed DOI

Citiulo F, Moran GP, Coleman DC, Sullivan DJ (2009) Purification and germination of Candida albicans and Candida dubliniensis chlamydospores cultured in liquid media. FEMS Yeast Res 9:1051–1060. https://doi.org/10.1111/j.1567-1364.2009.00533.x PubMed DOI

Cole GT, Seshan KR, Phaneuf M, Lynn KT (1991) Chlamydospore-like cells of Candida albicans in the gastrointestinal tract of infected, immunocompromised mice. Can J Microbiol 37:637–646. https://doi.org/10.1139/m91-108 PubMed DOI

Desai PR, van Wijlick L, Kurtz D et al (2015) Hypoxia and temperature regulated morphogenesis in Candida albicans. PLoS Genet 11:e1005447. https://doi.org/10.1371/journal.pgen.1005447 PubMed DOI PMC

Dimopoulos G, Karabinis A, Samonis G, Falagas ME (2007) Candidemia in immunocompromised and immunocompetent critically ill patients: a prospective comparative study. Eur J Clin Microbiol Infect Dis off Publ Eur Soc Clin Microbiol 26:377–384. https://doi.org/10.1007/s10096-007-0316-2 DOI

Dumitru R, Hornby JM, Nickerson KW (2004) Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother 48:2350–2354. https://doi.org/10.1128/AAC.48.7.2350-2354.2004 PubMed DOI PMC

Ghannoum MA, Jurevic RJ, Mukherjee PK et al (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713. https://doi.org/10.1371/journal.ppat.1000713 PubMed DOI PMC

Ghrenassia E, Mokart D, Mayaux J et al (2019) Candidemia in critically ill immunocompromised patients: report of a retrospective multicenter cohort study. Ann Intensive Care 9:62. https://doi.org/10.1186/s13613-019-0539-2 PubMed DOI PMC

Girish Kumar CP, Menon T, Prabu D, Nandhakumar B (2007) Chlamydosporulation of Candida albicans and Candida dubliniensis on mustard agar. Mycoses 50:71–73. https://doi.org/10.1111/j.1439-0507.2006.01320.x PubMed DOI

Grohskopf LA, Andriole VT (1996) Systemic Candida infections. Yale J Biol Med 69:505–515 PubMed PMC

Hayes AB (1966) Chlamydospore production in Candida albicans. Mycopathol Mycol Appl 29:87–96. https://doi.org/10.1007/BF02055062 PubMed DOI

Henry M, Burgain A, Tebbji F, Sellam A (2022) Transcriptional control of hypoxic hyphal growth in the fungal pathogen Candida albicans. Front Cell Infect Microbiol 11:770478. https://doi.org/10.3389/fcimb.2021.770478 PubMed DOI PMC

Jansons VK, Nickerson WJ (1970) Induction, morphogenesis, and germination of the chlamydospore of Candida albicans. J Bacteriol 104:910–921. https://doi.org/10.1128/jb.104.2.910-921.1970 PubMed DOI PMC

Lo HJ, Köhler JR, DiDomenico B et al (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949. https://doi.org/10.1016/s0092-8674(00)80358-x PubMed DOI

Martin SW, Douglas LM, Konopka JB (2005) Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Eukaryot Cell 4:1191–1202. https://doi.org/10.1128/EC.4.7.1191-1202.2005 PubMed DOI PMC

Miller SE, Spurlock BO, Michaels GE (1974) Electron microscopy of young Candida albicans chlamydospores. J Bacteriol 119:992–999. https://doi.org/10.1128/jb.119.3.992-999.1974 PubMed DOI PMC

Montazeri M, Hedrick HG (1984) Factors affecting spore formation in a Candida albicans strain. Appl Environ Microbiol 47:1341–1342. https://doi.org/10.1128/aem.47.6.1341-1342.1984 PubMed DOI PMC

Murad AMA, Leng P, Straffon M et al (2001) NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752. https://doi.org/10.1093/emboj/20.17.4742 PubMed DOI PMC

Navarathna DHMLP, Pathirana RU, Lionakis MS et al (2016) Candida albicans ISW2 regulates chlamydospore suspensor cell formation and virulence in vivo in a mouse model of disseminated candidiasis. PLoS ONE 11:e0164449. https://doi.org/10.1371/journal.pone.0164449 PubMed DOI PMC

Noble SM, Gianetti BA, Witchley JN (2017) Candida albicans cell type switches and functional plasticity in the mammalian host. Nat Rev Microbiol 15:96–108. https://doi.org/10.1038/nrmicro.2016.157 PubMed DOI

Odds FC, Davidson AD, Jacobsen MD et al (2006) Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J Clin Microbiol 44:3647–3658. https://doi.org/10.1128/JCM.00934-06 PubMed DOI PMC

Patil S, Rao RS, Majumdar B, Anil S (2015) Clinical appearance of oral candida infection and therapeutic strategies. Front Microbiol 6:1391. https://doi.org/10.3389/fmicb.2015.01391 PubMed DOI PMC

Pfaller MA, Jones RN, Doern GV et al (1999) International surveillance of blood stream infections due to Candida species in the European SENTRY Program: species distribution and antifungal susceptibility including the investigational triazole and echinocandin agents. SENTRY Participant Group (Europe). Diagn Microbiol Infect Dis 35:19–25 PubMed DOI

Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060. https://doi.org/10.1128/ec.2.5.1053-1060.2003 PubMed DOI PMC

Setiadi ER, Doedt T, Cottier F et al (2006) Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol 361:399–411. https://doi.org/10.1016/j.jmb.2006.06.040 PubMed DOI

Sims W (1986) Effect of carbon dioxide on the growth and form of Candida albicans. J Med Microbiol 22:203–208. https://doi.org/10.1099/00222615-22-3-203 PubMed DOI

Sims CR, Ostrosky-Zeichner L, Rex JH (2005) Invasive candidiasis in immunocompromised hospitalized patients. Arch Med Res 36:660–671. https://doi.org/10.1016/j.arcmed.2005.05.015 PubMed DOI

Sonneborn A, Bockmühl DP, Ernst JF (1999) Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67:5514–5517. https://doi.org/10.1128/IAI.67.10.5514-5517.1999 PubMed DOI PMC

Staib P, Morschhäuser J (2005a) Liquid growth conditions for abundant chlamydospore formation in Candida dubliniensis. Mycoses 48:50–54. https://doi.org/10.1111/j.1439-0507.2004.01085.x PubMed DOI

Staib P, Morschhäuser J (2005b) Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis. Mol Microbiol 55:637–652. https://doi.org/10.1111/j.1365-2958.2004.04414.x PubMed DOI

Stichternoth C, Ernst JF (2009) Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl Environ Microbiol 75:3663–3672. https://doi.org/10.1128/AEM.00098-09 PubMed DOI PMC

Stichternoth C, Fraund A, Setiadi E et al (2011) Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot Cell 10:502–511. https://doi.org/10.1128/EC.00289-10 PubMed DOI PMC

Viudes A, Pemán J, Cantón E et al (2002) Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur J Clin Microbiol Infect Dis off Publ Eur Soc Clin Microbiol 21:767–774. https://doi.org/10.1007/s10096-002-0822-1 DOI

Warwood NM, Blazevic DJ (1977) Comparison of cream of rice agar and horse serum for differentiating germ tubes of Candida albicans from filaments of Candida tropicalis. J Clin Microbiol 5:501–502. https://doi.org/10.1128/jcm.5.4.501-502.1977 PubMed DOI PMC

Webster CE, Odds FC (1987) Growth of pathogenic Candida isolates anaerobically and under elevated concentrations of CO2 in air. J Med Vet Mycol Bi-Mon Publ Int Soc Hum Anim Mycol 25:47–53

Wey SB, Mori M, Pfaller MA et al (1988) Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 148:2642–2645. https://doi.org/10.1001/archinte.148.12.2642 PubMed DOI

Zheng L, Kelly CJ, Colgan SP (2015) Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am J Physiol - Cell Physiol 309:C350–C360. https://doi.org/10.1152/ajpcell.00191.2015 PubMed DOI PMC

Znaidi S, van Wijlick L, Hernández-Cervantes A et al (2018) Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut. Cell Microbiol 20:e12890. https://doi.org/10.1111/cmi.12890 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...