Diagnosing Czech Patients with Inherited Platelet Disorders
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
00023736
Ministry of Health
64165
Ministry of Health
PubMed
36430862
PubMed Central
PMC9695320
DOI
10.3390/ijms232214386
PII: ijms232214386
Knihovny.cz E-resources
- Keywords
- ANKRD26, ITGA2B, NGS, clinical laboratory techniques, inherited platelet disorders, primary hemostasis,
- MeSH
- Blood Proteins genetics MeSH
- Hemorrhage MeSH
- Humans MeSH
- Blood Platelet Disorders * diagnosis genetics MeSH
- Platelet Function Tests MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Blood Proteins MeSH
- NBEAL2 protein, human MeSH Browser
A single-center study was conducted on 120 patients with inherited disorders of primary hemostasis followed at our hematological center. These patients presented a variety of bleeding symptoms; however, they had no definitive diagnosis. Establishing a diagnosis has consequences for the investigation of probands in families and for treatment management; therefore, we aimed to improve the diagnosis rate in these patients by implementing advanced diagnostic methods. According to the accepted international guidelines at the time of study, we investigated platelet morphology, platelet function assay, light-transmission aggregometry, and flow cytometry. Using only these methods, we were unable to make a definitive diagnosis for most of our patients. However, next-generation sequencing (NGS), which was applied in 31 patients, allowed us to establish definitive diagnoses in six cases (variants in ANKRD26, ITGA2B, and F8) and helped us to identify suspected variants (NBEAL2, F2, BLOC1S6, AP3D1, GP1BB, ANO6, CD36, and ITGB3) and new suspected variants (GFI1B, FGA, GP1BA, and ITGA2B) in 11 patients. The role of NGS in patients with suspicious bleeding symptoms is growing and it changes the diagnostic algorithm. The greatest disadvantage of NGS, aside from the cost, is the occurrence of gene variants of uncertain significance.
See more in PubMed
Palma-Barqueros V., Revilla N., Sánchez A., Zamora Cánovas A., Rodriguez-Alén A., Marín-Quílez A., González-Porras J.R., Vicente V., Lozano M.L., Bastida J.M., et al. Inherited Platelet Disorders: An Updated Overview. Int. J. Mol. Sci. 2021;22:4521. doi: 10.3390/ijms22094521. PubMed DOI PMC
Al-Huniti A., Kahr W.H.A. Inherited Platelet Disorders: Diagnosis and Management. Transfus. Med. Rev. 2020;34:277–285. doi: 10.1016/j.tmrv.2020.09.006. PubMed DOI
Lambert M.P. Inherited Platelet Disorders: A Modern Approach to Evaluation and Treatment. Hematol. Clin. 2019;33:471–487. doi: 10.1016/j.hoc.2019.01.008. PubMed DOI
Noris P., Pecci A. Hereditary thrombocytopenias: A growing list of disorders. Hematol. Am. Soc. Hematol. Educ. Progr. 2017;2017:385–399. doi: 10.1182/asheducation-2017.1.385. PubMed DOI PMC
Greinacher A., Eekels J.J.M. Diagnosis of hereditary platelet disorders in the era of next-generation sequencing: “primum non nocere”. J. Thromb. Haemost. 2019;17:551–554. doi: 10.1111/jth.14377. PubMed DOI
Fasulo M.R., Biguzzi E., Abbattista M., Stufano F., Pagliari M.T., Mancini I., Gorski M.M., Cannavò A., Corgiolu M., Peyvandi F., et al. The ISTH Bleeding Assessment Tool and the risk of future bleeding. J. Thromb. Haemost. 2018;16:125–130. doi: 10.1111/jth.13883. PubMed DOI
Pecci A., Balduini C.L. Inherited thrombocytopenias: An updated guide for clinicians. Blood Rev. 2021;48:100784. doi: 10.1016/j.blre.2020.100784. PubMed DOI
Bolton-Maggs P.H.B., Chalmers E.A., Collins P.W., Harrison P., Kitchen S., Liesner R.J., Minford A., Mumford A.D., Parapia L.A., Perry D.J., et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br. J. Haematol. 2006;135:603–633. doi: 10.1111/j.1365-2141.2006.06343.x. PubMed DOI
Lambert M.P. Updates in diagnosis of the inherited platelet disorders. Curr. Opin. Hematol. 2020;27:333–340. doi: 10.1097/MOH.0000000000000604. PubMed DOI
Harrison P., Mackie I., Mumford A., Briggs C., Liesner R., Winter M., Machin S. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol. 2011;155:30–44. doi: 10.1111/j.1365-2141.2011.08793.x. PubMed DOI
Rodeghiero F., Pabinger I., Ragni M., Abdul-Kadir R., Berntorp E., Blanchette V., Bodó I., Casini A., Gresele P., Lassila R., et al. Fundamentals for a Systematic Approach to Mild and Moderate Inherited Bleeding Disorders: An EHA Consensus Report. HemaSphere. 2019;3:e286. doi: 10.1097/HS9.0000000000000286. PubMed DOI PMC
Gresele P. Diagnosis of inherited platelet function disorders: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2015;13:314–322. doi: 10.1111/jth.12792. PubMed DOI
Megy K., Downes K., Morel-Kopp M.-C., Bastida J.M., Brooks S., Bury L., Leinoe E., Gomez K., Morgan N.V., Othman M., et al. GoldVariants, a resource for sharing rare genetic variants detected in bleeding, thrombotic, and platelet disorders: Communication from the ISTH SSC Subcommittee on Genomics in Thrombosis and Hemostasis. J. Thromb. Haemost. 2021;19:2612–2617. doi: 10.1111/jth.15459. PubMed DOI PMC
Elbaz C., Sholzberg M. An illustrated review of bleeding assessment tools and common coagulation tests. Res. Pract. Thromb. Haemost. 2020;4:761–773. doi: 10.1002/rth2.12339. PubMed DOI PMC
Rodeghiero F., Tosetto A., Abshire T., Arnold D.M., Coller B., James P., Neunert C., Lillicrap D. ISTH/SSC bleeding assessment tool: A standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J. Thromb. Haemost. 2010;8:2063–2065. doi: 10.1111/j.1538-7836.2010.03975.x. PubMed DOI
Elbatarny M., Mollah S., Grabell J., Bae S., Deforest M., Tuttle A., Hopman W., Clark D.S., Mauer A.C., Bowman M., et al. Normal range of bleeding scores for the ISTH-BAT: Adult and pediatric data from the merging project. Haemophilia. 2014;20:831–835. doi: 10.1111/hae.12503. PubMed DOI PMC
Gresele P., Orsini S., Noris P., Falcinelli E., Alessi M.C., Bury L., Borhany M., Santoro C., Glembotsky A.C., Cid A.R., et al. Validation of the ISTH/SSC bleeding assessment tool for inherited platelet disorders: A communication from the Platelet Physiology SSC. J. Thromb. Haemost. 2020;18:732–739. doi: 10.1111/jth.14683. PubMed DOI
Cattaneo M., Cerletti C., Harrison P., Hayward C.P.M., Kenny D., Nugent D., Nurden P., Rao A.K., Schmaier A.H., Watson S.P., et al. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J. Thromb. Haemost. 2013 doi: 10.1111/jth.12231. PubMed DOI
Rubak P., Nissen P.H., Kristensen S.D., Hvas A.-M. Investigation of platelet function and platelet disorders using flow cytometry. Platelets. 2016;27:66–74. doi: 10.3109/09537104.2015.1032919. PubMed DOI
Gunning W.T., 3rd, Raghavan M., Calomeni E.P., Turner J.N., Roysam B., Roysam S., Smith M.R., Kouides P.A., Lachant N.A. A Morphometric Analysis of Platelet Dense Granules of Patients with Unexplained Bleeding: A New Entity of Delta-Microgranular Storage Pool Deficiency. J. Clin. Med. 2020;9:1734. doi: 10.3390/jcm9061734. PubMed DOI PMC
Zaninetti C., Greinacher A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J. Clin. Med. 2020;9:539. doi: 10.3390/jcm9020539. PubMed DOI PMC
Hayward C.P.M., Harrison P., Cattaneo M., Ortel T.L., Rao A.K. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J. Thromb. Haemost. 2006;4:312–319. doi: 10.1111/j.1538-7836.2006.01771.x. PubMed DOI
van Asten I., Schutgens R.E.G., Baaij M., Zandstra J., Roest M., Pasterkamp G., Huisman A., Korporaal S.J.A., Urbanus R.T. Validation of flow cytometric analysis of platelet function in patients with a suspected platelet function defect. J. Thromb. Haemost. 2018;16:689–698. doi: 10.1111/jth.13952. PubMed DOI
Ferrari S., Lombardi A.M., Putti M.C., Bertomoro A., Cortella I., Barzon I., Girolami A., Fabris F. Spectrum of 5’UTR mutations in ANKRD26 gene in patients with inherited thrombocytopenia: C.-140C>G mutation is more frequent than expected. Platelets. 2017;28:621–624. doi: 10.1080/09537104.2016.1267337. PubMed DOI
Noris P., Favier R., Alessi M.-C., Geddis A.E., Kunishima S., Heller P.G., Giordano P., Niederhoffer K.Y., Bussel J.B., Podda G.M., et al. ANKRD26-related thrombocytopenia and myeloid malignancies. Blood. 2013;122:1987–1989. doi: 10.1182/blood-2013-04-499319. PubMed DOI
Perez Botero J., Dugan S.N., Anderson M.W. ANKRD26-Related Thrombocytopenia. In: Adam M.P., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., editors. GeneReviews® [Internet] University of Washington, Seattle; Seattle, WA, USA: 1993–2022. [(accessed on 25 October 2022)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507664/ PubMed
Galera P., Dulau-Florea A., Calvo K.R. Inherited thrombocytopenia and platelet disorders with germline predisposition to myeloid neoplasia. Int. J. Lab. Hematol. 2019;41((Suppl. S1)):131–141. doi: 10.1111/ijlh.12999. PubMed DOI
Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Khoriaty R., Ozel A.B., Ramdas S., Ross C., Desch K., Shavit J.A., Everett L., Siemieniak D., Li J.Z., Ginsburg D. Genome-wide linkage analysis and whole-exome sequencing identifies an ITGA2B mutation in a family with thrombocytopenia. Br. J. Haematol. 2019;186:574–579. doi: 10.1111/bjh.15961. PubMed DOI PMC
Kunishima S., Kashiwagi H., Otsu M., Takayama N., Eto K., Onodera M., Miyajima Y., Takamatsu Y., Suzumiya J., Matsubara K., et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood. 2011;117:5479–5484. doi: 10.1182/blood-2010-12-323691. PubMed DOI
Kashiwagi H., Kunishima S., Kiyomizu K., Amano Y., Shimada H., Morishita M., Kanakura Y., Tomiyama Y. Demonstration of novel gain-of-function mutations of αIIbβ3: Association with macrothrombocytopenia and glanzmann thrombasthenia-like phenotype. Mol. Genet. Genom. Med. 2013;1:77–86. doi: 10.1002/mgg3.9. PubMed DOI PMC
Morais S., Oliveira J., Lau C., Pereira M., Gonçalves M., Monteiro C., Gonçalves A.R., Matos R., Sampaio M., Cruz E., et al. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: Expanding the mutational and clinical spectrum. PLoS ONE. 2020;15:e0235136. doi: 10.1371/journal.pone.0235136. PubMed DOI PMC
Romano A.A., Allanson J.E., Dahlgren J., Gelb B.D., Hall B., Pierpont M.E., Roberts A.E., Robinson W., Takemoto C.M., Noonan J.A. Noonan syndrome: Clinical features, diagnosis, and management guidelines. Pediatrics. 2010;126:746–759. doi: 10.1542/peds.2009-3207. PubMed DOI
Pluthero F.G., Di Paola J., Carcao M.D., Kahr W.H.A. NBEAL2 mutations and bleeding in patients with gray platelet syndrome. Platelets. 2018;29:632–635. doi: 10.1080/09537104.2018.1478405. PubMed DOI
Aarts C.E.M., Downes K., Hoogendijk A.J., Sprenkeler E.G.G., Gazendam R.P., Favier R., Favier M., Tool A.T.J., van Hamme J.L., Kostadima M.A., et al. Neutrophil specific granule and NETosis defects in gray platelet syndrome. Blood Adv. 2021;5:549–564. doi: 10.1182/bloodadvances.2020002442. PubMed DOI PMC
Tariq H., Perez Botero J., Higgins R.A., Medina E.A. Gray Platelet Syndrome Presenting With Pancytopenia, Splenomegaly, and Bone Marrow Fibrosis. Am. J. Clin. Pathol. 2021;156:253–258. doi: 10.1093/ajcp/aqaa229. PubMed DOI
Bastida J.M., Lozano M.L., Benito R., Janusz K., Palma-Barqueros V., Del Rey M., Hernández-Sánchez J.M., Riesco S., Bermejo N., González-García H., et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica. 2018;103:148–162. doi: 10.3324/haematol.2017.171132. PubMed DOI PMC
Andres O., König E.-M., Althaus K., Bakchoul T., Bugert P., Eber S., Knöfler R., Kunstmann E., Manukjan G., Meyer O., et al. Use of Targeted High-Throughput Sequencing for Genetic Classification of Patients with Bleeding Diathesis and Suspected Platelet Disorder. Open Compan. J. Thromb. Haemost. 2018;2:e445–e454. doi: 10.1055/s-0038-1676813. PubMed DOI PMC
Johns M.B.J., Paulus-Thomas J.E. Purification of human genomic DNA from whole blood using sodium perchlorate in place of phenol. Anal. Biochem. 1989;180:276–278. doi: 10.1016/0003-2697(89)90430-2. PubMed DOI
Kalina T., Flores-Montero J., van der Velden V.H.J., Martin-Ayuso M., Böttcher S., Ritgen M., Almeida J., Lhermitte L., Asnafi V., Mendonça A., et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26:1986–2010. doi: 10.1038/leu.2012.122. PubMed DOI PMC
Chen D., Uhl C.B., Bryant S.C., Krumwiede M., Barness R.L., Olson M.C., Gossman S.C., Erdogan Damgard S., Gamb S.I., Cummins L.A., et al. Diagnostic laboratory standardization and validation of platelet transmission electron microscopy. Platelets. 2018;29:574–582. doi: 10.1080/09537104.2018.1476682. PubMed DOI