Large-scale spatial variability in urban tolerance of birds

. 2023 Feb ; 92 (2) : 403-416. [epub] 20221213

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36477754

Quantifying intraspecific and interspecific trait variability is critical to our understanding of biogeography, ecology and conservation. But quantifying such variability and understanding the importance of intraspecific and interspecific variability remain challenging. This is especially true of large geographic scales as this is where the differences between intraspecific and interspecific variability are likely to be greatest. Our goal is to address this research gap using broad-scale citizen science data to quantify intraspecific variability and compare it with interspecific variability, using the example of bird responses to urbanization across the continental United States. Using more than 100 million observations, we quantified urban tolerance for 338 species within randomly sampled spatial regions and then calculated the standard deviation of each species' urban tolerance. We found that species' spatial variability in urban tolerance (i.e. standard deviation) was largely explained by the variability of urban cover throughout a species' range (R2 = 0.70). Variability in urban tolerance was greater in species that were more tolerant of urban cover (i.e. the average urban tolerance throughout their range), suggesting that generalist life histories are better suited to adapt to novel anthropogenic environments. Overall, species differences explained most of the variability in urban tolerance across spatial regions. Together, our results indicate that (1) intraspecific variability is largely predicted by local environmental variability in urban cover at a large spatial scale and (2) interspecific variability is greater than intraspecific variability, supporting the common use of mean values (i.e. collapsing observations across a species' range) when assessing species-environment relationships. Further studies, across different taxa, traits and species-environment relationships are needed to test the role of intraspecific variability, but nevertheless, we recommend that when possible, ecologists should avoid using discrete categories to classify species in how they respond to the environment.

Zobrazit více v PubMed

Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G., & Violle, C. (2011). When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution and Systematics, 13(3), 217-225.

Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra-vs. Interspecific variability in plant traits. Functional Ecology, 24(6), 1192-1201.

Angert, A. L., Crozier, L. G., Rissler, L. J., Gilman, S. E., Tewksbury, J. J., & Chunco, A. J. (2011). Do species' traits predict recent shifts at expanding range edges? Ecology Letters, 14(7), 677-689.

Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., Kühn, I., MacGregor-Fors, I., McDonnell, M., Mörtberg, U., … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281, 20133330.

Bates, D., Mãchler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48.

Bay, R. A., Karp, D. S., Saracco, J. F., Anderegg, W. R., Frishkoff, L. O., Wiedenfeld, D., Smith, T. B., & Ruegg, K. (2021). Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 24(4), 819-828.

Beever, E. A., O'Leary, J., Mengelt, C., West, J. M., Julius, S., Green, N., Magness, D., Petes, L., Stein, B., Nicotra, A. B., Hellmann, J., Robertson, A. L., Staudinger, M. D., Rosenberg, A. A., Babij, E., Brennan, J., Schurrman, G. W., & Hofmann, G. E. (2016). Improving conservation outcomes with a new paradigm for understanding species' fundamental and realized adaptive capacity. Conservation Letters, 9(2), 131-137.

Bennett, S., Duarte, C. M., Marbà, N., & Wernberg, T. (2019). Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1778), 20180550.

Blair, R. B. (1996). Land use and avian species diversity along an urban gradient. Ecological Applications, 6, 506-519.

Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., Rudolf, V. H., Schreiber, S. J., Urban, M. C., & Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26(4), 183-192.

Bonier, F., Martin, P. R., & Wingfield, J. C. (2007). Urban birds have broader environmental tolerance. Biology Letters, 3(6), 670-673.

Callaghan, C. T., Benedetti, Y., Wilshire, J. H., & Morelli, F. (2020). Avian trait specialization is negatively associated with urban tolerance. Oikos, 129(10), 1541-1551.

Callaghan, C. T., Bowler, D. E., & Pereira, H. M. (2021). Thermal flexibility and a generalist life history promote urban affinity in butterflies. Global Change Biology, 27, 3532-3546.

Callaghan, C. T., Cornwell, W. K., Poore, A. G., Benedetti, Y., & Morelli, F. (2021). Urban tolerance of birds changes throughout the full annual cycle. Journal of Biogeography, 48(6), 1503-1517.

Callaghan, C. T., Palacio, F. X., Benedetti, Y., Morelli, F., & Bowler, D. E. (2022). Data from: Large scale spatial variability in urban tolerance of birds. Zenodo Repository. https://doi.org/10.5281/zenodo.7351955

Callaghan, C. T., Sayol, F., Benedetti, Y., Morelli, F., & Sol, D. (2021). Validation of a globally-applicable method to measure urban tolerance of birds using citizen science data. Ecological Indicators, 120, 106905.

Clements, J. F., Schulenberg, T. S., Iliff, M. J., Fredericks, T. A., Gerbracht, J. A., Lepage, D., Billerman, S. M., Sullivan, B. L., & Wood, C. L. (2019). The eBird/Clements checklist of Birds of the World: v2019. https://www.birds.cornell.edu/clementschecklist/download/

Cornelissen, J. H., Sibma, F., Van Logtestijn, R. S., Broekman, R. A., & Thompson, K. (2011). Leaf pH as a plant trait: Species-driven rather than soil-driven variation. Functional Ecology, 25(3), 449-455.

Croci, S., Butet, A., & Clereau, P. (2008). Does urbanization filter birds on the basis of their biological traits? The Condor, 110(2), 223-240.

Cushman, S. A., & McGarigal, K. (2002). Hierarchical, multi-scale decomposition of species-environment relationships. Landscape Ecology, 17(7), 637-646.

de Bello, F., Lavorel, S., Albert, C. H., Thuiller, W., Grigulis, K., Dolezal, J., Janeček, Š., & Lepš, J. (2011). Quantifying the relevance of intraspecific trait variability for functional diversity. Methods in Ecology and Evolution, 2(2), 163-174.

Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T., Schweitzer, J. A., & Palkovacs, E. P. (2018). The ecological importance of intraspecific variation. Nature Ecology & Evolution, 2(1), 57-64.

Devictor, V., Van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., Herrando, S., Julliard, R., Kuussaari, M., Lindström, A., Reif, J., Roy, D. B., Schweiger, O., Settele, J., Stefanescu, C., Van Strien, A., Van Turnhout, C., Vermouzek, Z., WallisDeVries, M., … Jiguet, F. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2(2), 121-124.

Ducatez, S., Sol, D., Sayol, F., & Lefebvre, L. (2020). Behavioural plasticity is associated with reduced extinction risk in birds. Nature Ecology & Evolution, 4(6), 788-793.

Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C., & Ghosh, T. (2017). VIIRS night-time lights. International Journal of Remote Sensing, 38(21), 5860-5879.

Evans, B. A., & Gawlik, D. E. (2020). Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird. Scientific Reports, 10(1), 1-12.

Evans, K. L. (2010). Individual species and urbanization. In K. J. Gaston (Ed.), (pp. 53-87). Cambridge University Press.

Evans, K. L., Chamberlain, D. E., Hatchwell, B. J., Gregory, R. D., & Gaston, K. J. (2011). What makes an urban bird? Global Change Biology, 17(1), 32-44.

Fandos, G., Rotics, S., Sapir, N., Fiedler, W., Kaatz, M., Wikelski, M., Nathan, R., & Zurell, D. (2020). Seasonal niche tracking of climate emerges at the population level in a migratory bird. Proceedings of the Royal Society B: Biological Sciences, 287(1935), 20201799.

Fenoglio, M. S., Calviño, A., González, E., Salvo, A., & Videla, M. (2021). Urbanisation drivers and underlying mechanisms of terrestrial insect diversity loss in cities. Ecological Entomology, 46(4), 757-771.

Fidino, M., Gallo, T., Lehrer, E. W., Murray, M. H., Kay, C. A. M., Sander, H. A., MacDougall, B., Salsbury, C. M., Ryan, T. J., Angstmann, J. L., Belaire, J. A., Dugelby, B., Schell, C. J., Stankowich, T., Amaya, M., Drake, D., Hursh, S. H., Ahlers, A. A., Williamson, J., … Magle, S. B. (2021). Landscape-scale differences among cities alter common species' responses to urbanization. Ecological Applications, 31(2), e02253.

Foden, W. B., Butchart, S. H., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., DeVantier, L. M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O'Hanlon, S. E., Garnett, S. T., Şekercioğlu, Ç. H., & Mace, G. M. (2013). Identifying the world's most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE, 8(6), e65427.

Franzén, M., Betzholtz, P.-E., Pettersson, L. B., & Forsman, A. (2020). Urban moth communities suggest that life in the city favours thermophilic multi-dimensional generalists. Proceedings of the Royal Society B: Biological Sciences, 287(1928), 20193014.

Gilmour, M. E., Castillo-Guerrero, J. A., Fleishman, A. B., Hernández-Vázquez, S., Young, H. S., & Shaffer, S. A. (2018). Plasticity of foraging behaviors in response to diverse environmental conditions. Ecosphere, 9(7), e02301.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.

Gouveia, S. F., Hortal, J., Tejedo, M., Duarte, H., Cassemiro, F. A. S., Navas, C. A., & Diniz-Filho, J. A. F. (2014). Climatic niche at physiological and macroecological scales: The thermal tolerance-geographical range interface and niche dimensionality. Global Ecology and Biogeography, 23(4), 446-456.

Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L., Duke, C. S., & Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment, 11(3), 156-162.

He, D., Biswas, S. R., Xu, M.-S., Yang, T.-H., You, W.-H., & Yan, E.-R. (2021). The importance of intraspecific trait variability in promoting functional niche dimensionality. Ecography, 44(3), 380-390.

Hertel, A. G., Niemelä, P. T., Dingemanse, N. J., & Mueller, T. (2020). A guide for studying among-individual behavioral variation from movement data in the wild. Movement Ecology, 8(1), 1-18.

Hertzog, L. R., Frank, C., Klimek, S., Röder, N., Böhner, H. G., & Kamp, J. (2021). Model-based integration of citizen science data from disparate sources increases the precision of bird population trends. Diversity and Distributions, 27(6), 1106-1119.

Ho, L. S. T., & Ane, C. (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology, 63(3), 397-408.

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491, 444-448.

Jiguet, F., Gregory, R. D., Devictor, V., Green, R. E., Voříšek, P., Van Strien, A., & Couvet, D. (2010). Population trends of european common birds are predicted by characteristics of their climatic niche. Global Change Biology, 16(2), 497-505.

Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61(1), 65-71.

Jokimäki, J., Suhonen, J., Jokimäki-Kaisanlahti, M.-L., & Carbó-Ramı́rez, P. (2016). Effects of urbanization on breeding birds in european towns: Impacts of species traits. Urban Ecosystem, 19(4), 1565-1577.

Kark, S., Iwaniuk, A., Schalimtzek, A., & Banker, E. (2007). Living in the city: Can anyone become an ‘urban exploiter’? Journal of Biogeography, 34(4), 638-651.

Kraft, N. J., Valencia, R., & Ackerly, D. D. (2008). Functional traits and niche-based tree community assembly in an amazonian forest. Science, 322(5901), 580-582.

Lajoie, G., & Vellend, M. (2015). Understanding context dependence in the contribution of intraspecific variation to community trait-environment matching. Ecology, 96(11), 2912-2922.

Lawton, R. J., Cole, A. J., Berumen, M. L., & Pratchett, M. S. (2012). Geographic variation in resource use by specialist versus generalist butterflyfishes. Ecography, 35(6), 566-576.

Liu, G., Rowley, J. J., Kingsford, R. T., & Callaghan, C. T. (2021). Species' traits drive amphibian tolerance to anthropogenic habitat modification. Global Change Biology, 27(13), 3120-3132.

Lynn, J. S., Klanderud, K., Telford, R. J., Goldberg, D. E., & Vandvik, V. (2021). Macroecological context predicts species' responses to climate warming. Global Change Biology, 27(10), 2088-2101.

Ma, T., Zhou, C., Pei, T., Haynie, S., & Fan, J. (2012). Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China's cities. Remote Sensing of Environment, 124, 99-107.

MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377-385.

Magle, S. B., Fidino, M., Sander, H. A., Rohnke, A. T., Larson, K. L., Gallo, T., Kay, C. A. M., Lehrer, E. W., Murray, M. H., Adalsteinsson, S. A., Ahlers, A. A., Anthonysamy, W. J. B., Gramza, A. R., Green, A. M., Jordan, M. J., Lewis, J. S., Long, R. A., MacDougall, B., Pendergast, M. E., … Schell, C. J. (2021). Wealth and urbanization shape medium and large terrestrial mammal communities. Global Change Biology, 27(21), 5446-5459.

Mair, L., & Ruete, A. (2016). Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE, 11(1), e0147796.

Marcacci, G., Westphal, C., Wenzel, A., Raj, V., Nölke, N., Tscharntke, T., & Grass, I. (2021). Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. Global Change Biology, 27(20), 4980-4994.

Martin, Y., Van Dyck, H., Legendre, P., Settele, J., Schweiger, O., Harpke, A., Wiemers, M., Ameztegui, A., & Titeux, N. (2020). A novel tool to assess the effect of intraspecific spatial niche variation on species distribution shifts under climate change. Global Ecology and Biogeography, 29(3), 590-602.

McCabe, J. D., Clare, J. D., Miller, T. A., Katzner, T. E., Cooper, J., Somershoe, S., Hanni, D., Kelly, C. A., Sargent, R., Soehren, E. C., Threadgill, C., Maddox, M., Stober, J., Martell, M., Salo, T., Berry, A., Lanzone, M. J., Braham, M. A., & McClure, C. J. W. (2021). Resource selection functions based on hierarchical generalized additive models provide new insights into individual animal variation and species distributions. Ecography, 44(12), 1756-1768.

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247-260.

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884.

Palacio, F. X. (2020). Urban exploiters have broader dietary niches than urban avoiders. Ibis, 162(1), 42-49.

Palacio, F. X., Fernández, G. J., & Ordano, M. (2019). Does accounting for within-individual trait variation matter for measuring functional diversity? Ecological Indicators, 102, 43-50.

Parris, K. M. (2016). Ecology of urban environments. John Wiley & Sons.

Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. The R Journal, 10(1), 439-446.

Piano, E., Souffreau, C., Merckx, T., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N., Decaestecker, E., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., Hanashiro, F. T. T., Higuti, J., Lens, L., … Hendrickx, F. (2020). Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Global Change Biology, 26(3), 1196-1211.

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Raffard, A., Lecerf, A., Cote, J., Buoro, M., Lassus, R., & Cucherousset, J. (2017). The functional syndrome: Linking individual trait variability to ecosystem functioning. Proceedings of the Royal Society B: Biological Sciences, 284(1868), 20171893.

Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223.

Santini, L., González-Suárez, M., Russo, D., Gonzalez-Voyer, A., von Hardenberg, A., & Ancillotto, L. (2019). One strategy does not fit all: Determinants of urban adaptation in mammals. Ecology Letters, 22(2), 365-376.

Schaub, M., Kéry, M., Birrer, S., Rudin, M., & Jenni, L. (2011). Habitat-density associations are not geographically transferable in swiss farmland birds. Ecography, 34(4), 693-704.

Seltzer, C. (2019). Making biodiversity data social, shareable, and scalable: Reflections on iNaturalist & citizen science. Biodiversity Information Science and Standards, e10197.

Sol, D., González-Lagos, C., Moreira, D., Maspons, J., & Lapiedra, O. (2014). Urbanisation tolerance and the loss of avian diversity. Ecology Letters, 17(8), 942-950.

Soroye, P., Ahmed, N., & Kerr, J. T. (2018). Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Global Change Biology, 24(11), 5281-5291.

Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution, 8(11), 1639-1644.

Stokes, E. C., & Seto, K. C. (2019). Characterizing urban infrastructural transitions for the sustainable development goals using multi-temporal land, population, and nighttime light data. Remote Sensing of Environment, 234, 111430.

Storchová, L., & Hořák, D. (2018). Life-history characteristics of European birds. Global Ecology and Biogeography, 27(4), 400-406.

Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., Damoulas, T., Dhondt, A. A., Dietterich, T., Farnsworth, A., Fink, D., Fitzpatrick, J. W., Fredericks, T., Gerbracht, J., Gomes, C., Hochachka, W. M., Iliff, M. J., Lagoze, C., La Sorte, F. A., … Kelling, S. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31-40.

Sullivan, B. L., Phillips, T., Dayer, A. A., Wood, C. L., Farnsworth, A., Iliff, M. J., Davies, I. J., Wiggins, A., Fink, D., Hochachka, W. M., Rodewald, A. D., Rosenberg, K. V., Bonney, R., & Kelling, S. (2017). Using open access observational data for conservation action: A case study for birds. Biological Conservation, 208, 5-14.

Tang, B., Clark, J. S., & Gelfand, A. E. (2021). Modeling spatially biased citizen science effort through the eBird database. Environmental and Ecological Statistics, 28, 609-630.

Thakur, M. P., & Wright, A. J. (2017). Environmental filtering, niche construction, and trait variability: The missing discussion. Trends in Ecology & Evolution, 32(12), 884-886.

Thompson, M. J., Evans, J. C., Parsons, S., & Morand-Ferron, J. (2018). Urbanization and individual differences in exploration and plasticity. Behavioral Ecology, 29(6), 1415-1425.

Thrush, S. F., Hewitt, J. E., Herman, P. M., & Ysebaert, T. (2005). Multi-scale analysis of species-environment relationships. Marine Ecology Progress Series, 302, 13-26.

Tingley, M. W., Monahan, W. B., Beissinger, S. R., & Moritz, C. (2009). Birds track their Grinnellian niche through a century of climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 19637-19643.

Trevail, A. M., Green, J. A., Bolton, M., Daunt, F., Harris, S. M., Miller, P. I., Newton, S., Owen, E., Polton, J. A., Robertson, G., Sharples, J., & Patrick, S. C. (2021). Environmental heterogeneity promotes individual specialisation in habitat selection in a widely distributed seabird. Journal of Animal Ecology, 90(12), 2875-2887.

Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J., & Martin, T. G. (2013). Realising the full potential of citizen science monitoring programs. Biological Conservation, 165, 128-138.

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., & Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27(4), 244-252.

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882-892.

Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., & LeRoy Poff, N. (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13(3), 267-283.

Wesolowski, T., & Fuller, R. J. (2012). Spatial variation and temporal shifts in habitat use by birds at the European scale (pp. 63-92). Birds and Habitat: Relationships in Changing Landscapes. Cambridge University Press.

Weston, L. M., Mattingly, K. Z., Day, C. T., & Hovick, S. M. (2021). Potential local adaptation in populations of invasive reed canary grass (Phalaris arundinacea) across an urbanization gradient. Ecology and Evolution, 11(16), 11457-11476.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pederson, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.

Winchell, K. M., Schliep, K. P., Mahler, D. L., & Revell, L. J. (2020). Phylogenetic signal and evolutionary correlates of urban tolerance in a widespread neotropical lizard clade. Evolution, 74(7), 1274-1288.

Wong, M. K., & Carmona, C. P. (2021). Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: Lessons from natural assemblages. Methods in Ecology and Evolution, 12(5), 946-957.

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73(1), 3-36.

Xie, Y., Weng, Q., & Fu, P. (2019). Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013-2017. Remote Sensing of Environment, 225, 160-174.

Yang, J., Cao, M., & Swenson, N. G. (2018). Why functional traits do not predict tree demographic rates. Trends in Ecology & Evolution, 33(5), 326-336.

Zhang, B., Hautier, Y., Tan, X., You, C., Cadotte, M. W., Chu, C., Jiang, L., Sui, X., Ren, T., Han, X., & Chen, S. (2020). Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 34(12), 2622-2633.

Zhang, Q., & Seto, K. C. (2013). Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sensing, 5(7), 3476-3494.

Zurell, D., Gallien, L., Graham, C. H., & Zimmermann, N. E. (2018). Do long-distance migratory birds track their niche through seasons? Journal of Biogeography, 45(7), 1459-1468.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...