Multidimensional stoichiometric mismatch explains differences in detritivore biomass across three forest types

. 2023 Feb ; 92 (2) : 454-465. [epub] 20221218

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36477808

The ecological stoichiometry theory provides a framework to understand organism fitness and population dynamics based on stoichiometric mismatch between organisms and their resources. Recent studies have revealed that different soil animals occupy distinct multidimensional stoichiometric niches (MSNs), which likely determine their specific stoichiometric mismatches and population responses facing resource changes. The goals of the present study are to examine how long-term forest plantations affect multidimensional elemental contents of litter and detritivores and the population size of detritivores that occupy distinct MSNs. We evaluated the contents of 10 elements of two detritivore taxa (lumbricid earthworms and julid millipedes) and their litter resources, quantified their MSNs and the multidimensional stoichiometric mismatches, and examined how such mismatch patterns influence the density and total biomass of detritivores across three forest types spanning from natural forests (oak forest) to plantations (pine and larch forests). Sixty-year pine plantations changed the multidimensional elemental contents of litter, but did not influence the elemental contents of the two detritivore taxa. Earthworms and millipedes exhibited distinct patterns of MSNs and stoichiometric mismatches, but they both experienced severer stoichiometric mismatches in pine plantations than in oak forests and larch plantations. Such stoichiometric mismatches led to lower density and biomass of both earthworms and millipedes in pine plantations. In other words, under conditions of low litter quality and severe stoichiometric mismatches in pine plantations, detritivores maintained their body elemental contents but decreased their population biomass. Our study illustrates the success in using the multidimensional stoichiometric framework to understand the impact of forest plantations on animal population dynamics, which may serve as a useful tool in addressing ecosystem responses to global environmental changes.

生态化学计量理论为研究生态系统不同组分间的元素流动提供了基本框架,消费者-资源之间化学元素比的错配直接影响了有机体生长和种群动态。不同土壤动物类群存在化学计量生态位上的分化,这导致不同动物类群应对食物资源变化时会产生不同程度的元素错配。 本研究基于北京东灵山三种森林类型(天然辽东栎次生林和人工种植油松林和落叶松林)开展调查,测量了两种土壤动物分解者类群(正蚓科蚯蚓和马陆)及其生境中的凋落物的十种化学元素含量,量化了分解者和凋落物之间的化学计量错配程度,并评估了化学元素错配如何影响两种分解者的密度和生物量。 研究发现,六十年油松林种植显著改变了凋落物化学元素组成,但并未显著改变两种分解者的化学元素含量。在三种森林中,蚯蚓和马陆具有明显的化学计量生态位分化,从而展示不同的元素错配模式;但两种分解者在油松林中均受到更为严重的化学计量错配程度,这种错配导致两种分解者在油松林中密度和生物量更小。整体上,在具有较低凋落物质量的油松林中,分解者维持了体内元素含量但降低了种群生物量。 本研究展示了在多维度化学计量理论框架下探究人工林种植对土壤动物种群动态影响的可行性,该理论框架可作为一种有效的工具来探究生态系统如何响应全球环境变化。.

Zobrazit více v PubMed

Abail, Z., & Whalen, J. K. (2018). Selective ingestion contributes to the stoichiometric homeostasis in tissues of the endogeic earthworm Aporrectodea turgida. Soil Biology and Biochemistry, 119(May 2017), 121-127. https://doi.org/10.1016/j.soilbio.2018.01.014

Andrieux, B., Signor, J., Guillou, V., Danger, M., & Jabot, F. (2021). Body stoichiometry of heterotrophs: Assessing drivers of interspecific variations in elemental composition. Global Ecology and Biogeography, 30(4), 883-895. https://doi.org/10.1111/geb.13265

Blonder, B., Morrow, C. B., Maitner, B., Harris, D. J., Lamanna, C., Violle, C., Enquist, B. J., & Kerkhoff, A. J. (2018). New approaches for delineating n-dimensional hypervolumes. Methods in Ecology and Evolution, 9(2), 305-319. https://doi.org/10.1111/2041-210X.12865

Coq, S., Nahmani, J., Kazakou, E., Fromin, N., & David, J. F. (2020). Do litter-feeding macroarthropods disrupt cascading effects of land use on microbial decomposer activity? Basic and Applied Ecology, 46, 24-34. https://doi.org/10.1016/j.baae.2020.03.004

Cromack, K. J., Sollins, P., Todd, R. L., Crossley, D. A. J., Fender, W. M., Fogel, R., & Todd, A. W. (1977). Soil microorganism-arthropod interactions: Fungi as major calcium and sodium sources. In W. J. Mattson (Ed.), The role of arthropods in forest ecosystems (pp. 78-84). Springer.

Cromack, K. J., Todd, R. L., & Monk, C. D. (1975). Patterns of basidiomycete nutrient accumulation in conifer and deciduous forest litter. Soil Biology and Biochemistry, 7(4-5), 265-268. https://doi.org/10.1016/0038-0717(75)90065-6

Cross, W. F., Benstead, J. P., Rosemond, A. D., & Bruce Wallace, J. (2003). Consumer-resource stoichiometry in detritus-based streams. Ecology Letters, 6(8), 721-732. https://doi.org/10.1046/j.1461-0248.2003.00481.x

Crowther, T. W., Boddy, L., & Jones, T. H. (2011). Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia, 167(2), 535-545. https://doi.org/10.1007/s00442-011-2005-1

Curry, J. P., & Schmidt, O. (2007). The feeding ecology of earthworms - A review. Pedobiologia, 50(6), 463-477. https://doi.org/10.1016/j.pedobi.2006.09.001

Danger, M., Arce Funck, J., Devin, S., Heberle, J., & Felten, V. (2013). Phosphorus content in detritus controls life-history traits of a detritivore. Functional Ecology, 27(3), 807-815. https://doi.org/10.1111/1365-2435.12079

Danger, M., & Chauvet, E. (2013). Elemental composition and degree of homeostasis of fungi: Are aquatic hyphomycetes more like metazoans, bacteria or plants? Fungal Ecology, 6(5), 453-457. https://doi.org/10.1016/j.funeco.2013.05.007

DeMott, W. R., Gulati, R. D., & Siewertsen, K. (1998). Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnology and Oceanography, 43(6), 1147-1161. https://doi.org/10.4319/lo.1998.43.6.1147

Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., & Sterner, R. W. (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408(6812), 578-580. https://doi.org/10.1038/35046058

Fagan, W. F., & Denno, R. F. (2004). Stoichiometry of actual vs. potential predator-prey interactions: Insights into nitrogen limitation for arthropod predators. Ecology Letters, 7(9), 876-883. https://doi.org/10.1111/j.1461-0248.2004.00641.x

Fagan, W. F., Siemann, E., Mitter, C., Denno, R. F., Huberty, A. F., Woods, H. A., & Elser, J. J. (2002). Nitrogen in insects: Implications for trophic complexity and species diversification. The American Naturalist, 160(6), 784-802. https://doi.org/10.1086/343879

Feng, Y., Schmid, B., Loreau, M., Forrester, D. I., Fei, S., Zhu, J., Hong, P., Ji, C., Shi, Y., Su, H., Xiong, X., Xiao, J., Wang, S., & Fang, J. (2022). Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 376(6595), 865-868. https://doi.org/10.1126/science.abm6363

Filipiak, M. (2016). Pollen stoichiometry may influence detrital terrestrial and aquatic food webs. Frontiers in Ecology and Evolution, 4, 138. https://doi.org/10.3389/fevo.2016.00138

Filipiak, M. (2018). Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: The ecological stoichiometry of saproxylophagous insects. In M. D. Ulyshen (Ed.), Saproxylic insects diversity, ecology and conservation (pp. 429-469). Springer, Cham. https://doi.org/10.1007/978-3-319-75937-1_13

Filipiak, M., & Filipiak, Z. M. (2022). Application of ionomics and ecological stoichiometry in conservation biology: Nutrient demand and supply in a changing environment. Biological Conservation, 272(June), 109622. https://doi.org/10.1016/j.biocon.2022.109622

Filipiak, M., Kuszewska, K., Asselman, M., Denisow, B., Stawiarz, E., Woyciechowski, M., & Weiner, J. (2017). Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE, 12(8), e0183236. https://doi.org/10.1371/journal.pone.0183236

Filipiak, M., & Weiner, J. (2014). How to make a beetle out of wood: Multi-elemental stoichiometry of wood decay, xylophagy and fungivory. PLoS ONE, 9(12), e115104. https://doi.org/10.1371/journal.pone.0115104

Filipiak, M., & Weiner, J. (2017a). Nutritional dynamics during the development of xylophagous beetles related to changes in the stoichiometry of 11 elements. Physiological Entomology, 42(1), 73-84. https://doi.org/10.1111/phen.12168

Filipiak, M., & Weiner, J. (2017b). Plant-insect interactions: The role of ecological stoichiometry. Acta Agrobotanica, 70(1), 1710. https://doi.org/10.5586/aa.1710

Frainer, A., Jabiol, J., Gessner, M. O., Bruder, A., Chauvet, E., & McKie, B. G. (2016). Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos, 125(6), 861-871. https://doi.org/10.1111/oik.02687

Frausto da Silva, J. J. R., & Williams, R. J. P. (2001). The biological chemistry of the elements: The inorganic chemistry of life (2nd ed.). Oxford University Press.

Frost, P. C., Evans-White, M. A., Finkel, Z. V., Jensen, T. C., & Matzek, V. (2005). Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos, 109(1), 18-28. https://doi.org/10.1111/j.0030-1299.2005.14049.x

González, A. L., Céréghino, R., Dézerald, O., Farjalla, V. F., Leroy, C., Richardson, B. A., Richardson, M. J., Romero, G. Q., & Srivastava, D. S. (2018). Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Functional Ecology, 32(10), 2448-2463. https://doi.org/10.1111/1365-2435.13197

González, A. L., Dézerald, O., Marquet, P. A., Romero, G. Q., & Srivastava, D. S. (2017). The multidimensional stoichiometric niche. Frontiers in Ecology and Evolution, 5(SEP), 1-17. https://doi.org/10.3389/fevo.2017.00110

González, A. L., Fariña, J. M., Kay, A. D., Pinto, R., & Marquet, P. A. (2011). Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos, 120(8), 1247-1255. https://doi.org/10.1111/j.1600-0706.2010.19151.x

Halvorson, H. M., Fuller, C. L., Entrekin, S. A., Scott, J. T., & Evans-White, M. A. (2018). Detrital nutrient content and leaf species differentially affect growth and nutritional regulation of detritivores. Oikos, 127(10), 1471-1481. https://doi.org/10.1111/oik.05201

Halvorson, H. M., Fuller, C. L., Entrekin, S. A., Scott, J. T., & Evans-White, M. A. (2019). Interspecific homeostatic regulation and growth across aquatic invertebrate detritivores: A test of ecological stoichiometry theory. Oecologia, 190(1), 229-242. https://doi.org/10.1007/s00442-019-04409-w

Hillebrand, H., Borer, E. T., Bracken, M. E. S., Cardinale, B. J., Cebrian, J., Cleland, E. E., Elser, J. J., Gruner, D. S., Harpole, W. S., Ngai, J. T., Sandin, S., Seabloom, E. W., Shurin, J. B., Smith, J. E., & Smith, M. D. (2009). Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems. Ecology Letters, 12(6), 516-527. https://doi.org/10.1111/j.1461-0248.2009.01304.x

Hua, F., Bruijnzeel, L. A., Meli, P., Martin, P. A., Zhang, J., Nakagawa, S., Miao, X., Wang, W., McEvoy, C., Peña-Arancibia, J. L., Brancalion, P. H. S., Smith, P., Edwards, D. P., & Balmford, A. (2022). The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 4649, 1-28. https://doi.org/10.1126/science.abl4649

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de La Société Vaudoise Des Sciences Naturelles, 37, 547-579.

Jochum, M., Barnes, A. D., Ott, D., Lang, B., Klarner, B., Farajallah, A., Scheu, S., & Brose, U. (2017). Decreasing stoichiometric resource quality drives compensatory feeding across trophic levels in tropical litter invertebrate communities. The American Naturalist, 190(1), 131-143. https://doi.org/10.1086/691790

Jochum, M., Barnes, A. D., Weigelt, P., Ott, D., Rembold, K., Farajallah, A., & Brose, U. (2017). Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates. Journal of Animal Ecology, 86(5), 1114-1123. https://doi.org/10.1111/1365-2656.12695

Kaspari, M., & Powers, J. S. (2016). Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. The American Naturalist, 188(S1), S62-S73. https://doi.org/10.1086/687576

Kaspari, M., & Yanoviak, S. P. (2009). Biogeochemistry and the structure of tropical brown food webs. Ecology, 90(12), 3342-3351. https://doi.org/10.1890/08-1795.1

Lemoine, N. P., Giery, S. T., & Burkepile, D. E. (2014). Differing nutritional constraints of consumers across ecosystems. Oecologia, 174(4), 1367-1376. https://doi.org/10.1007/s00442-013-2860-z

Liess, A. (2014). Compensatory feeding and low nutrient assimilation efficiencies lead to high nutrient turnover in nitrogen-limited snails. Freshwater Science, 33(2), 425-434. https://doi.org/10.1086/675533

Loranger-Merciris, G., Imbert, D., Bernhard-Reversat, F., Lavelle, P., & Ponge, J. F. (2008). Litter N-content influences soil millipede abundance, species richness and feeding preferences in a semi-evergreen dry forest of Guadeloupe (Lesser Antilles). Biology and Fertility of Soils, 45(1), 93-98. https://doi.org/10.1007/s00374-008-0321-3

Makino, W., Cotner, J. B., Sterner, R. W., & Elser, J. J. (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17(1), 121-130. https://doi.org/10.1046/j.1365-2435.2003.00712.x

Marichal, R., Mathieu, J., Couteaux, M.-M., Mora, P., Roy, J., & Lavelle, P. (2011). Earthworm and microbe response to litter and soils of tropical forest plantations with contrasting C:N:P stoichiometric ratios. Soil Biology and Biochemistry, 43(7), 1528-1535. https://doi.org/10.1016/j.soilbio.2011.04.001

McGroddy, M. E., Daufresne, T., & Hedin, L. O. (2004). Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology, 85(9), 2390-2401. https://doi.org/10.1890/03-0351

Moe, S. J., Stelzer, R. S., Forman, M. R., Harpole, W. S., Daufresne, T., & Yoshida, T. (2005). Recent advances in ecological stoichiometry: Insights for population and community ecology. Oikos, 109(1), 29-39. https://doi.org/10.1111/j.0030-1299.2005.14056.x

Mueller, K. E., Eisenhauer, N., Reich, P. B., Hobbie, S. E., Chadwick, O. A., Chorover, J., Dobies, T., Hale, C. M., Jagodziński, A. M., Kałucka, I., Kasprowicz, M., Kieliszewska-Rokicka, B., Modrzyński, J., Rożen, A., Skorupski, M., Sobczyk, Ł., Stasińska, M., Trocha, L. K., Weiner, J., … Oleksyn, J. (2016). Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biology and Biochemistry, 92, 184-198. https://doi.org/10.1016/j.soilbio.2015.10.010

Ott, D., Digel, C., Klarner, B., Maraun, M., Pollierer, M., Rall, B. C., Scheu, S., Seelig, G., & Brose, U. (2014). Litter elemental stoichiometry and biomass densities of forest soil invertebrates. Oikos, 123(10), 1212-1223. https://doi.org/10.1111/oik.01670

Ott, D., Rall, B. C., & Brose, U. (2012). Climate change effects on macrofaunal litter decomposition: The interplay of temperature, body masses and stoichiometry. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1605), 3025-3032. https://doi.org/10.1098/rstb.2012.0240

Paquette, A., Hector, A., Castagneyrol, B., Vanhellemont, M., Koricheva, J., Scherer-Lorenzen, M., Verheyen, M., & TreeDivNet. (2018). A million and more trees for science. Nature Ecology & Evolution, 2(5), 763-766. https://doi.org/10.1038/s41559-018-0544-0

Pokarzhevskii, A. D., Van Straalen, N. M., Zaboev, D. P., & Zaitsev, A. S. (2003). Microbial links and element flows in nested detrital food-webs. Pedobiologia, 47(3), 213-224. https://doi.org/10.1078/0031-4056-00185

Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R., & Scheu, S. (2019). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology, 88(12), 1845-1859. https://doi.org/10.1111/1365-2656.13027

Rożen, A., Sobczyk, Ł., Liszka, K., & Weiner, J. (2010). Soil faunal activity as measured by the bait-lamina test in monocultures of 14 tree species in the Siemianice common-garden experiment, Poland. Applied Soil Ecology, 45(3), 160-167. https://doi.org/10.1016/j.apsoil.2010.03.008

Scheu, S., & Setälä, H. (2002). Multitrophic interactions in decomposer food-webs. In T. Tscharntke & B. A. Hawkins (Eds.), Multitrophic level interactions (pp. 223-264). Cambridge University Press. https://doi.org/10.1017/CBO9780511542190.010

Schwarzmüller, F., Eisenhauer, N., & Brose, U. (2015). ‘Trophic whales’ as biotic buffers: Weak interactions stabilize ecosystems against nutrient enrichment. Journal of Animal Ecology, 84(3), 680-691. https://doi.org/10.1111/1365-2656.12324

Small, G. E., & Pringle, C. M. (2010). Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a neotropical stream. Oecologia, 162(3), 581-590. https://doi.org/10.1007/s00442-009-1489-4

Sobczyk, Ł., Filipiak, M., & Czarnoleski, M. (2020). Sexual dimorphism in the multielemental stoichiometric phenotypes and stoichiometric niches of spiders. Insects, 11(8), 1-14. https://doi.org/10.3390/insects11080484

Sterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: The biology of elements from molecules to the biosphere. Retrieved from https://books.google.com/books/about/Ecological_Stoichiometry.html?id=53NTDvppdYUC

Urabe, J., & Watanabe, Y. (1992). Possibility of N or P limitation for planktonic cladocerans: An experimental test. Limnology and Oceanography, 37(2), 244-251. https://doi.org/10.4319/lo.1992.37.2.0244

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.

Wang, C., Zhang, W., Li, X., & Wu, J. (2022). A global meta-analysis of the impacts of tree plantations on biodiversity. Global Ecology and Biogeography, 31(3), 576-587. https://doi.org/10.1111/geb.13440

Wardle, D. A. (2002). Communities and ecosystems: Linking the aboveground and belowground components. Princeton University Press.

Woods, H. A., Fagan, W. F., Elser, J. J., & Harrison, J. F. (2004). Allometric and phylogenetic variation in insect phosphorus content. Functional Ecology, 18(1), 103-109. https://doi.org/10.1111/j.1365-2435.2004.00823.x

Zhang, B., Chen, H., Deng, M., Li, J., González, A. L., & Wang, S. (2022). High dimensionality of stoichiometric niches in soil fauna. Ecology, 103(9), 1-9. https://doi.org/10.1002/ecy.3741

Zhang, B., Chen, H., Deng, M., Li, X., Chen, T.-W., Liu, L., Scheu, S., & Wang, S. (2022). Data from: Multidimensional stoichiometric mismatch explains differences in detritivore biomass across three forest types. Dryad Digital Repository. https://doi.org/10.5061/dryad.8w9ghx3r1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...