Imaging Modalities Used for Frameless and Fiducial-Less Deep Brain Stimulation: A Single Centre Exploratory Study among Parkinson's Disease Cases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36553139
PubMed Central
PMC9777451
DOI
10.3390/diagnostics12123132
PII: diagnostics12123132
Knihovny.cz E-zdroje
- Klíčová slova
- Nexframe, O-arm, Parkinson’s disease, deep brain stimulation,
- Publikační typ
- časopisecké články MeSH
Deep brain stimulation (DBS) is a beneficial procedure for treating idiopathic Parkinson's disease (PD), essential tremor, and dystonia. The authors describe their set of imaging modalities used for a frameless and fiducial-less method of DBS. CT and MRI scans are obtained preoperatively, and STN parcellation is done based on diffusion tractography. During the surgery, an intraoperative cone-beam computed tomography scan is obtained and merged with the preoperatively-acquired images to place electrodes using a frameless and fiducial-less system. Accuracy is evaluated prospectively. The described sequence of imaging methods shows excellent accuracy compared to the frame-based techniques.
Department of Neurology University Hospital Olomouc 77900 Olomouc Czech Republic
Department of Neurosurgery University Hospital Olomouc 77900 Olomouc Czech Republic
Zobrazit více v PubMed
Fox S.H., Katzenschlager R., Lim S.-Y., Barton B., de Bie R.M.A., Seppi K., Coelho M., Sampaio C., Movement Disorder Society Evidence-Based Medicine Committee International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 2018;33:1248–1266. doi: 10.1002/mds.27372. PubMed DOI
Hyam J.A., Owen S.L., Kringelbach M.L., Jenkinson N., Stein J.F., Green A.L., Aziz T.Z. Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery. 2012;70:162–169. doi: 10.1227/NEU.0b013e3182262c9a. PubMed DOI
Behrens T.E.J., Johansen-Berg H., Woolrich M.W., Smith S.M., Wheeler-Kingshott C.A.M., A Boulby P., Barker G.J., Sillery E.L., Sheehan K., Ciccarelli O., et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 2003;6:750–757. doi: 10.1038/nn1075. PubMed DOI
Kincses Z.T., Szabo N., Valalik I., Kopniczky Z., Dezsi L., Klivenyi P., Jenkinson M., Király A., Babos M., Vörös E., et al. Target Identification for Stereotactic Thalamotomy Using Diffusion Tractography. PLoS ONE. 2012;7:e29969. doi: 10.1371/journal.pone.0029969. PubMed DOI PMC
Akram H., Dayal V., Mahlknecht P., Georgiev D., Hyam J., Foltynie T., Limousin P., De Vita E., Jahanshahi M., Ashburner J., et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage Clin. 2018;18:130–142. doi: 10.1016/j.nicl.2018.01.008. PubMed DOI PMC
Temiz G., Sébille S.B., Francois C., Bardinet E., Karachi C. The anatomo-functional organization of the hyperdirect cortical pathway to the subthalamic area using in vivo structural connectivity imaging in humans. Brain Struct. Funct. 2020;225:551–565. doi: 10.1007/s00429-019-02012-6. PubMed DOI
Dafsari H.S., Petry-Schmelzer J.N., Ray-Chaudhuri K., Ashkan K., Weis L., Dembek T.A., Samuel M., Rizos A., Silverdale M., Barbe M.T., et al. Non-motor outcomes of subthalamic stimulation in Parkinson’s disease depend on location of active contacts. Brain Stimul. 2018;11:904–912. PubMed
Odekerken V.J., van Laar T., Staal M.J., Mosch A., Hoffmann C.F., Nijssen P.C., Beute G.N., van Vugt J.P., Lenders M.W., Contarino M.F., et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): A randomised controlled trial. Lancet Neurol. 2013;12:37–44. doi: 10.1016/S1474-4422(12)70264-8. PubMed DOI
Avecillas-Chasin J.M., Alonso-Frech F., Parras O., Del Prado N., Barcia J.A. Assessment of a method to determine deep brain stimulation targets using deterministic tractography in a navigation system. Neurosurg. Rev. 2015;38:739–751. doi: 10.1007/s10143-015-0643-1. PubMed DOI
Behrens T.E., Berg H.J., Jbabdi S., Rushworth M.F., Woolrich M.W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 2007;34:144–155. doi: 10.1016/j.neuroimage.2006.09.018. PubMed DOI PMC
Behrens T.E., Woolrich M.W., Jenkinson M., Johansen-Berg H., Nunes R.G., Clare S., Matthews P.M., Brady J.M., Smith S.M. Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging. Magn. Reson. Med. 2003;50:1077–1088. doi: 10.1002/mrm.10609. PubMed DOI
Jbabdi S., Sotiropoulos S.N., Haber S.N., Van Essen D.C., Behrens T.E. Measuring macroscopic brain connections in vivo. Nat. Neurosci. 2015;18:1546–1555. doi: 10.1038/nn.4134. PubMed DOI
Brunenberg E.J.L., Moeskops P., Backes W.H., Pollo C., Cammoun L., Vilanova A., Janssen M.L.F., Visser-Vandewalle V.E.R.M., Romeny B.M.T.H., Thiran J.-P., et al. Structural and Resting State Functional Connectivity of the Subthalamic Nucleus: Identification of Motor STN Parts and the Hyperdirect Pathway. PLoS ONE. 2012;7:e39061. doi: 10.1371/journal.pone.0039061. PubMed DOI PMC
Petersen M.V., Lund T.E., Sunde N., Frandsen J., Rosendal F., Juul N., Østergaard K. Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation. J. Neurosurg. 2017;126:1657–1668. doi: 10.3171/2016.4.JNS1624. PubMed DOI
Lambert C., Zrinzo L., Nagy Z., Lutti A., Hariz M., Foltynie T., Draganski B., Ashburner J., Frackowiak R. Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage. 2012;60:83–94. doi: 10.1016/j.neuroimage.2011.11.082. PubMed DOI PMC
Muller J., Alizadeh M., Mohamed F.B., Riley J., Pearce J.J., Trieu B., Liang T.-W., Romo V., Sharan A., Wu C. Clinically applicable delineation of the pallidal sensorimotor region in patients with advanced Parkinson’s disease: Study of probabilistic and deterministic tractography. J. Neurosurg. 2019;131:1520–1531. doi: 10.3171/2018.7.JNS18541. PubMed DOI
Jenkinson M., Bannister P., Brady M., Smith S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage. 2002;17:825–841. doi: 10.1006/nimg.2002.1132. PubMed DOI
Schuepbach W.M., Tonder L., Schnitzler A., Krack P., Rau J., Hartmann A., Hälbig T.D., Pineau F., Falk A., Paschen L., et al. Quality of life predicts outcome of deep brain stimulation in early Parkinson disease. Neurology. 2019;92:e1109–e1120. doi: 10.1212/WNL.0000000000007037. PubMed DOI PMC
Okun M.S., Gallo B.V., Mandybur G., Jagid J., Foote K.D., Revilla F.J., Alterman R., Jankovic J., Simpson R., Junn F., et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: An open-label randomised controlled trial. Lancet Neurol. 2012;11:140–149. doi: 10.1016/S1474-4422(11)70308-8. PubMed DOI
Krahulík D., Nevrlý M., Otruba P., Kaňovský P. Deep Brain Stimulation in Olomouc—Techniques, Electrode Locations, and Outcomes. Ces. Slov. Neurol. Neurochir. 2014;77:54–58.
Urgošík D., Jech R., Růžička E. Deep brain stimulation in patients suffering from movement disorders—Stereotactic procedure and intraoperative findings | Hluboká mozková stimulace u nemocných s extrapyramidovými poruchami pohybu -Stereotaktická procedura a intraoperační nálezy. Ces. Slov. Neurol. Neurochir. 2011;74:175–186.
Holloway K.L., Gaede S.E., Starr P.A., Rosenow J.M., Ramakrishnan V., Henderson J.M. Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J. Neurosurg. 2005;103:404–413. doi: 10.3171/jns.2005.103.3.0404. PubMed DOI
Krahulík D., Nevrlý M., Otruba P., Bardoň J., Hrabálek L., Vaverka M., Kaňovský P. Placement Accuracy of Deep Brain Stimulation Electrodes using the NexFrame© Frameless System. Ces. Slov. Neurol. Neurochir. 2017;80:208–212. doi: 10.14735/amcsnn2017208. DOI
Krahulík D., Nevrlý M., Otruba P., Bardoň J., Hrabálek L., Pohlodek D., Kaňovský P., Valošek J. O-Arm Navigated Frameless and Fiducial-Less Deep Brain Stimulation. Brain Sci. 2020;10:683. doi: 10.3390/brainsci10100683. PubMed DOI PMC