Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene

. 2023 Jun ; 68 (3) : 431-440. [epub] 20221226

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36567375

Grantová podpora
451-03-68/2022-14/200161 Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
451-03-68/2022-14/200042 Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
451-03-68/2022-14/200178 Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Odkazy

PubMed 36567375
DOI 10.1007/s12223-022-01026-8
PII: 10.1007/s12223-022-01026-8
Knihovny.cz E-zdroje

Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.

Zobrazit více v PubMed

Amoureux L, Bador J, Fardeheb S, Mabille C, Couchot C, Massip C, Salignon AL, Berlie G, Varin V, Neuwirth C (2013) Detection of Achromobacter xylosoxidans in hospital, domestic, and outdoor environmental samples and comparison with human clinical isolates. Appl Environ Microbiol 79:7142–7149. https://doi.org/10.1128/AEM.02293-13 PubMed DOI PMC

Beauruelle C, Lamoureux C, Mashi A, Ramel S, Le Bihan J, Ropars T, Dirou A, Banerjee A, Tandé D, Le Bars H, Héry-Arnaud G (2021) In vitro activity of 22 antibiotics against Achromobacter isolates from people with cystic fibrosis. Are there new therapeutic options? Microorganisms 9:2473–2483. https://doi.org/10.3390/microorganisms9122473 PubMed DOI PMC

Blom J, Kreis J, Spänig S, Juhre T, Bertelli C, Ernst C, Goesmann A (2016) EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 44:W22–W28. https://doi.org/10.1093/nar/gkw255 PubMed DOI PMC

CLSI (2021) Performance standards for antimicrobial susceptibility testing. 31

Cury J, Jové T, Touchon M, Néron B, Rocha EP (2016) Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 44:4539–4550. https://doi.org/10.1093/nar/gkw319 PubMed DOI PMC

Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704.PMID:15231754;PMCID:PMC442156 PubMed DOI PMC

Demarre G, Frumerie C, Gopaul DN, Mazel D (2007) Identification of key structural determinants of the IntI1 integron integrase that influence attC x attI1 recombination efficiency. Nucleic Acids Res 35:6475–6489. https://doi.org/10.1093/nar/gkm709 PubMed DOI PMC

Doster E, Lakin S, Dean C, Wolfe C, Young J, Boucher C, Belk K, Noyes N, Morley P (2020) MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res 48:D561–D569 PubMed DOI

Filipic B, Malesevic M, Vasiljevic Z, Lukic J, Novovic K, Kojic M, Jovcic B (2017) Uncovering differences in virulence markers associated with Achromobacter species of CF and non-CF origin. Front Cell Infect Microbiol 7:224–236. https://doi.org/10.3389/fcimb.2017.00224 PubMed DOI PMC

Frank T, Gautier V, Talarmin A, Bercion R, Arlet G (2007) Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). J Antimicrob Chemother 59:742–745. https://doi.org/10.1093/jac/dkl538 PubMed DOI

Gabrielaite M, Bartell JA, Nørskov-Lauritsen N, Pressler T, Nielsen FC, Johansen HK, Marvig RL (2021) Transmission and antibiotic resistance of Achromobacter in cystic fibrosis. J Clin Microbiol 9:e02911–e02920. https://doi.org/10.1128/JCM.02911-20 DOI

Ghaly TM, Chow L, Asher AJ, Waldron LS, Gillings MR (2017) Evolution of class 1 integrons: mobilization and dispersal via food-borne bacteria. PLoS ONE 12:e0179169–e0179179. https://doi.org/10.1371/journal.pone.0179169 PubMed DOI PMC

Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269–1279. https://doi.org/10.1038/ismej.2014.226 PubMed DOI

Gillings MR (2014) Integrons: past, present, and future. Microbiol Mol Biol Rev 78:257–277. https://doi.org/10.1128/MMBR.00056-13 PubMed DOI PMC

Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM, Harris SR (2018) Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34:292–293. https://doi.org/10.1093/bioinformatics/btx610 PubMed DOI

Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666. https://doi.org/10.1111/j.1462-2920.2006.01185.x PubMed DOI

Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL (2020) Achromobacter infections and treatment options. Antimicrob Agents Chemother 64:e01025-e1120. https://doi.org/10.1128/AAC.01025-20 PubMed DOI PMC

Kerrn MB, Klemmensen T, Frimodt-Møller N, Espersen F (2002) Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J Antimicrob Chemother 50:513–516. https://doi.org/10.1093/jac/dkf164 PubMed DOI

Lambiase A, Catania MR, Del Pezzo M, Rossano F, Terlizzi V, Sepe A, Raia V (2011) Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 30:973–980 PubMed DOI PMC

Liu C, Pan F, Guo J, Yan W, Jin Y, Liu C, Qin L, Fang X (2016) Hospital acquired pneumonia due to Achromobacter spp. in a geriatric ward in China: clinical characteristic, genome variability, biofilm production, antibiotic resistance and integron in isolated strains. Front Microbiol 7:621–631. https://doi.org/10.3389/fmicb.2016.00621 PubMed DOI PMC

Marion-Sanchez K, Pailla K, Olive C, Coutour X, Derancourt C (2019) Achromobacter spp. healthcare associated infections in the French West Indies: a longitudinal study from 2006 to 2016. BMC Infect Dis 19:795–804. https://doi.org/10.1186/s12879-019-4431-3 PubMed DOI PMC

McGuigan L, Callaghan M (2015) The evolving dynamics of the microbial community in the cystic fibrosis lung. Environ Microbiol 17:16–28 PubMed DOI

Orman BE, Pineiro SA, Arduino S, Galas M, Melano R, Caffer MI, Sordelli DO, Centron D (2002) Evolution of multiresistance in nontyphoid Salmonella serovars from 1984 to 1998 in Argentina. Antimicrob Agents Chemother 46:3963–3970. https://doi.org/10.1128/AAC.46.12.3963-3970.2002 PubMed DOI PMC

Padmaja K, Lakshmi V, Rao MA, Mishra RC, Rosy C, Sritharan V (2013) Prosthetic valve endocarditis with aortic root abscess due to Achromobacter xylosoxidans subsp denitrificans – a rare case report. Int J Infect Control (serial Online) 9:1–5

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421 PubMed DOI PMC

Paulsen IT, Littlejohn TG, Radstrom P, Sundstrom L, Skold O, Swedberg G, Skurray RA (1993) The 39 conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother 37:761–768 PubMed DOI PMC

Radstrom P, Skold O, Swedberg G, Flensburg J, Roy PH, Sundstrom L (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 176:3257–3268 PubMed DOI PMC

Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153 PubMed DOI

Shie SS, Huang CT, Leu HS (2005) Characteristics of Achromobacter xylosoxidans bacteremia in northern Taiwan. J Microbiol Immunol Infect 38:277–282 PubMed

Spilker T, Vandamme P, Lipuma JJ (2012) A multilocus sequence typing scheme implies population structure and reveals several putative novel Achromobacter species. J Clin Microbiol 50:3010–3015. https://doi.org/10.1128/JCM.00814-12 PubMed DOI PMC

Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477. https://doi.org/10.1016/j.mib.2008.09.006 PubMed DOI

Traglia GM, Almuzara M, Merkier AK, Adams C, Galanternik L, Vay C, Centrón D, Ramírez MS (2012) Achromobacter xylosoxidans: an emerging pathogen carrying different elements involved in horizontal genetic transfer. Curr Microbiol 65:673–678. https://doi.org/10.1007/s00284-012-0213-5 PubMed DOI PMC

Zhang AN, Li LG, Ma L, Gillings M, Tiedje J, Zhang T (2018) Conserved phylogenetic distribution and limited antibiotic resistance of class 1 integrons revealed by assessing the bacterial genome and plasmid collection. Microbiome 6:130. https://doi.org/10.1186/s40168-018-0516-2 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...