Two new species of Fistulina (Agaricales, Basidiomycota) from the Northern Hemisphere
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36569068
PubMed Central
PMC9777173
DOI
10.3389/fmicb.2022.1063038
Knihovny.cz E-resources
- Keywords
- Fistulinaceae, brown rot, polypore, taxonomy, wood-decaying fungi,
- Publication type
- Journal Article MeSH
Phylogenetic and morphological analyses on samples of Fistulina from East Asia and North America were carried out, and two new species were described, namely, Fistulina americana and Fistulina orientalis, both previously known as Fistulina hepatica. The former is characterized by lateral stipitate basidiocarps, relatively small pores (7-8 per mm), a monomitic hyphal system with both clamp connections and simple septa, and ellipsoid basidiospores of 4-4.8 × 3-3.3 μm, and the species has been found on Quercus in North-East USA. F. orientalis is characterized by lateral stipitate basidiocarps, very small pores (11-12 per mm) with pruinose dissepiments, a monomitic hyphal system with both clamp connections and simple septa, and ovoid to subglobose basidiospores of 3-4 × 2.7-3 μm, and the species has been found on Castanopsis in East Asia. Phylogenetically, samples of F. americana and F. orientalis form two new lineages nested in the Fistulina clade.
Biology Centre of the Academy of Sciences of the Czechia České Budějovice Czechia
Institute of Edible Fungi Shanghai Academy of Agricultural Sciences Shanghai China
School of Biological Sciences Institute of Microbiology Seoul National University Seoul South Korea
The Connecticut Agricultural Experiment Station Valley Laboratory Windsor CT United States
See more in PubMed
Anonymous (1969). Flora of British fungi. Colour identification chart. London: Her Majesty’s Stationery Office, 1–3.
Binder M., Hibbett D. S., Larsson K. H., Larsson E., Langer E., Langer G. (2005). The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Syst. Biodivers. 2 113–157. 10.1017/s1477200005001623 DOI
Bodensteiner P., Binder M., Moncalvo J. M., Agerer R., Hibbett D. S. (2004). Phylogenetic relationships of cyphelloid Homobasidiomycetes. Mol. Phylogenet. Evol. 2 501–515. 10.1016/j.ympev.2004.06.007 PubMed DOI
Bulliard P. (1791). Histoire des champignons de la France: Ou, traité élémentaire renfermant dans un ordre méthodique les descriptions et les figures des champignons qui croissent naturellement en France, Vol. 1. Paris: Chez l’Auteur, 1–368.
Cao Y., Wu S. H., Dai Y. C. (2012). Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 56 49–62. 10.1007/s13225-012-0178-5 DOI
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9:772. 10.1038/nmeth.2109 PubMed DOI PMC
Gilbertson R. L., Ryvarden L. (1986). North American polypores 1. Oslo: Fungiflora, 1–433.
González G. C., Barroetaveña C., Visnovsky S. B., Rajchenberg M., Pildain M. B. (2021). A new species, phylogeny, and a worldwide key of the edible wood decay Fistulina (Agaricales). Mycol. Prog. 20 733–746. 10.1007/s11557-021-01696-7 DOI
Hall T. A. (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41 95–98.
Katoh K., Rozewicki J., Yamada K. D. (2019). MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC
Maddison W. P., Maddison D. R. (2021). Mesquite: A modular system for evolutionary analysis. Available online at: https://www.mesquiteproject.org/ (accessed October 4, 2022).
Miller M. A., Holder M. T., Vos R., Midford P. E., Liebowitz T., Chan L., et al. (2009). The CIPRES portals. Available online at: http://www.phylo.org/sub_sections/portal (accessed October 2022).
Niemelä T. (2016). The polypores of Finland. Norrlinia 31 1–430.
Núñez M., Ryvarden L. (2001). East asian polypores 2. Polyporaceae s. lato. Synopsis Fungorum 14, 170–522.
Petersen J. H. (1996). The Danish mycological society’s colour-chart. Greve: Foreningen til Svampekundskabens Fremme, 1–6.
Rambaut A. (2018). Molecular evolution, phylogenetics and epidemiology. FigTree ver. 1.4.4 software. Available online at: http://tree.bio.ed.ac.uk/software/figtree/ (accessed October 2022).
Ronquist F., Teslenko M., van der Mark P., Ayres D., Darling A., Höhna S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Ryvarden L., Gilbertson R. L. (1993). European polypores 1, abortiporus-Lindtneria. Synopsis Fungorum 6, 1–387.
Ryvarden L., Melo I. (2017). Poroid fungi of Europe. Synopsis Fungorum 37, 1–431.
Shen L. L., Wang M., Zhou J. L., Xing J. H., Cui B. K., Dai Y. C. (2019). Taxonomy and phylogeny of Postia. Multi-gene phylogeny and taxonomy of the brown-rot fungi: Postia (Polyporales, Basidiomycota) and related genera. Persoonia 42 101–126. 10.3767/persoonia.2019.42.05 PubMed DOI PMC
Song J., Han M. L., Cui B. K. (2015). Fistulina subhepatica sp. nov. from China inferred from morphological and sequence analyses. Mycotaxon 130 47–56. 10.5248/130.47 DOI
Song J., Sun Y. F., Ji X., Dai Y. C., Cui B. K. (2018). Phylogeny and taxonomy of Laetiporus (Basidiomycota, Polyporales) with descriptions of two new species from western China. MycoKeys 37:57. 10.3897/mycokeys.37.26016 PubMed DOI PMC
Stamatakis A. (2014). RAxML Version 8: A tool for phylogenetic analyses and post analyses of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Sun Y. F., Liu S., Cui B. K. (2019). Morphological and phylogenetic analyses reveal a new species of Fistulina (Fistulinaceae, Agaricales) from Australia. Phytotaxa 420 233–240. 10.11646/phytotaxa.420.3.3 DOI
Vasaitis R., Menkis A., Lim Y. W., Seok S., Tomšovskı M., Jankovskı L., et al. (2009). Genetic variation and relationships in Laetiporus sulphureus s. lat., as determined by ITS rDNA sequences and in vitro growth rate. Mycol. Res. 113 326–336. 10.1016/j.mycres.2008.11.009 PubMed DOI
Vilgalys R., Hester M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172 4238–4246. 10.1128/jb.172.8.4238-4246.1990 PubMed DOI PMC
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR protocols: A guide to methods and applications, eds Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York, NY: Academic Press; ), 315–322. 10.1016/B978-0-12-372180-8.50042-1 DOI
Wu F., Man X. W., Tohtirjap A., Dai Y. C. (2022). A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. For. Ecosyst. 9:100051. 10.1016/j.fecs.2022.100051 DOI