Deleterious, protein-altering variants in the transcriptional coregulator ZMYM3 in 27 individuals with a neurodevelopmental delay phenotype
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
F31 MH126628
NIMH NIH HHS - United States
UM1 HG007301
NHGRI NIH HHS - United States
PubMed
36586412
PubMed Central
PMC9943726
DOI
10.1016/j.ajhg.2022.12.007
PII: S0002-9297(22)00541-9
Knihovny.cz E-resources
- Keywords
- X-linked intellectual disability, ZMYM3, chromatin modifiers, neurodevelopmental disorder, transcriptional coregulators,
- MeSH
- Phenotype MeSH
- Histone Demethylases genetics MeSH
- Nuclear Proteins genetics MeSH
- Humans MeSH
- Nervous System Malformations * MeSH
- Intellectual Disability * genetics MeSH
- Neurodevelopmental Disorders * genetics MeSH
- Face MeSH
- Gene Expression Regulation MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Histone Demethylases MeSH
- Nuclear Proteins MeSH
- KDM1A protein, human MeSH Browser
- ZMYM3 protein, human MeSH Browser
Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.
Amsterdam University Medical Centers Department of Clinical Genetics Amsterdam the Netherlands
Boston Children's Hospital Boston MA USA
Boston Children's Hospital Boston MA USA; Harvard Medical School Boston MA 02115 USA
Center for Integrative Genomics University of Lausanne Lausanne Switzerland
Children's Hospital of Eastern Ontario Research Institute Ottawa ON Canada
Children's Medical Center Dallas TX USA
Children's Mercy Kansas City Center for Pediatric Genomic Medicine Kansas City KS USA
Childrens Hospital of Philadelphia Philadelphia PA USA
Department of Clinical Genetics Erasmus MC University Medical Center Rotterdam the Netherlands
Department of Genetic Medicine and Development University of Geneva Geneva Switzerland
Department of Genetics University of Alabama at Birmingham Birmingham AL USA
Department of Medical Sciences University of Torino 10126 Torino Italy
Division of Genetics and Metabolism Children's Health Dallas TX USA
Division of Genetics Children's Mercy Kansas City Kansas City MO USA
GeneDx LLC Gaithersburg MD 20877 USA
Genetic Medicine UCSF Fresno Fresno CA 93701 USA
Genetics and Metabolism Arkansas Children's Hospital Little Rock AR 72202 USA
Genetics and Rare Diseases Research Division Ospedale Pediatrico Bambino Gesù IRCCS 00146 Rome Italy
Greenwood Genetic Center Greenwood SC 29646 USA
HudsonAlpha Clinical Services Lab LLC Huntsville AL 35806 USA
HudsonAlpha Institute for Biotechnology Huntsville AL 35806 USA
Institute of Medical Genetics University of Zurich Schlieren 8952 Switzerland
Obestetrics and Gynecology Department Golestan University of Medical Sciences Gorgan Iran
Pediatrics and Medical Genetics University of Colorado Aurora CO USA
See more in PubMed
Ropers H.H. Genetics of intellectual disability. Curr. Opin. Genet. Dev. 2008;18:241–250. doi: 10.1016/j.gde.2008.07.008. PubMed DOI
Cooper G.M., Coe B.P., Girirajan S., Rosenfeld J.A., Vu T.H., Baker C., Williams C., Stalker H., Hamid R., Hannig V., et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 2011;43:838–846. doi: 10.1038/ng.909. PubMed DOI PMC
Srivastava S., Love-Nichols J.A., Dies K.A., Ledbetter D.H., Martin C.L., Chung W.K., Firth H.V., Frazier T., Hansen R.L., Prock L., et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 2019;21:2413–2421. doi: 10.1038/S41436-019-0554-6. PubMed DOI PMC
Bamshad M.J., Nickerson D.A., Chong J.X. Mendelian gene discovery: fast and furious with no end in sight. Am. J. Hum. Genet. 2019;105:448–455. doi: 10.1016/J.AJHG.2019.07.011. PubMed DOI PMC
Hakimi M.-A., Dong Y., Lane W.S., Speicher D.W., Shiekhattar R. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J. Biol. Chem. 2003;278:7234–7239. doi: 10.1074/jbc.M208992200. PubMed DOI
Shapson-Coe A., Valeiras B., Wall C., Rada C. Aicardi-Goutières Syndrome associated mutations of RNase H2B impair its interaction with ZMYM3 and the CoREST histone-modifying complex. PLoS One. 2019;14:e0213553. doi: 10.1371/JOURNAL.PONE.0213553. PubMed DOI PMC
Hu X., Shen B., Liao S., Ning Y., Ma L., Chen J., Lin X., Zhang D., Li Z., Zheng C., et al. Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint. Cell Death Dis. 2017;8:e2910. doi: 10.1038/cddis.2017.228. PubMed DOI PMC
Leung J.W.C., Makharashvili N., Agarwal P., Chiu L.-Y., Pourpre R., Cammarata M.B., Cannon J.R., Sherker A., Durocher D., Brodbelt J.S., et al. ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev. 2017;31:260–274. doi: 10.1101/gad.292516.116. PubMed DOI PMC
van der Maarel S.M., Scholten I.H., Huber I., Philippe C., Suijkerbuijk R.F., Gilgenkrantz S., Kere J., Cremers F.P., Ropers H.H. Cloning and characterization of DXS6673E, a candidate gene for X-linked mental retardation in Xq13.1. Hum. Mol. Genet. 1996;5:887–897. PubMed
Philips A.K., Sirén A., Avela K., Somer M., Peippo M., Ahvenainen M., Doagu F., Arvio M., Kääriäinen H., Van Esch H., et al. X-exome sequencing in Finnish families with Intellectual Disability - Four novel mutations and two novel syndromic phenotypes. Orphanet J. Rare Dis. 2014;9:49. doi: 10.1186/1750-1172-9-49. PubMed DOI PMC
Boycott K.M., Azzariti D.R., Hamosh A., Rehm H.L. Seven years since the launch of the matchmaker exchange: the evolution of genomic matchmaking. Hum. Mutat. 2022;43:659–667. doi: 10.1002/HUMU.24373. PubMed DOI PMC
Hamosh A., Wohler E., Martin R., Griffith S., Rodrigues E.d.S., Antonescu C., Doheny K.F., Valle D., Sobreira N. The impact of GeneMatcher on international data sharing and collaboration. Hum. Mutat. 2022;43:668–673. doi: 10.1002/HUMU.24350. PubMed DOI PMC
Osmond M., Hartley T., Johnstone B., Andjic S., Girdea M., Gillespie M., Buske O., Dumitriu S., Koltunova V., Ramani A., et al. PhenomeCentral: 7 years of rare disease matchmaking. Hum. Mutat. 2022;43:674–681. doi: 10.1002/HUMU.24348. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/S41586-021-03819-2. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/JCC.20084. PubMed DOI
Rossi Sebastiano M., Ermondi G., Hadano S., Caron G. AI-based protein structure databases have the potential to accelerate rare diseases research: AlphaFoldDB and the case of IAHSP/Alsin. Drug Discov. Today. 2022;27:1652–1660. doi: 10.1016/J.DRUDIS.2021.12.018. PubMed DOI
Savic D., Partridge E.C., Newberry K.M., Smith S.B., Meadows S.K., Roberts B.S., Mackiewicz M., Mendenhall E.M., Myers R.M. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res. 2015;25:1581–1589. doi: 10.1101/GR.193540.115. PubMed DOI PMC
Meadows S.K., Brandsmeier L.A., Newberry K.M., Betti M.J., Nesmith A.S., Mackiewicz M., Partridge E.C., Mendenhall E.M., Myers R.M. Epitope tagging ChIP-seq of DNA binding proteins using CETCh-seq. Methods Mol. Biol. 2020;2117:3–34. doi: 10.1007/978-1-0716-0301-7_1/COVER. PubMed DOI
Kharchenko P.V., Tolstorukov M.Y., Park P.J. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 2008;26:1351–1359. doi: 10.1038/nbt.1508. PubMed DOI PMC
Li Q., Brown J.B., Huang H., Bickel P.J. Measuring Reproducibility of High-Throughput Experiments. Ann. Appl. Stat. 2011;5:1752–1779. doi: 10.1214/11-AOAS466. DOI
Landt S.G., Marinov G.K., Kundaje A., Kheradpour P., Pauli F., Batzoglou S., Bernstein B.E., Bickel P., Brown J.B., Cayting P., et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012;22:1813–1831. doi: 10.1101/GR.136184.111. PubMed DOI PMC
Lun A.T.L., Smyth G.K. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res. 2016;44:e45. doi: 10.1093/NAR/GKV1191. PubMed DOI PMC
Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46:310–315. doi: 10.1038/ng.2892. PubMed DOI PMC
Cooper G.M., Stone E.A., Asimenos G., NISC Comparative Sequencing Program. Green E.D., Batzoglou S., Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–913. doi: 10.1101/GR.3577405. PubMed DOI PMC
Connaughton D.M., Dai R., Owen D.J., Marquez J., Mann N., Graham-Paquin A.L., Nakayama M., Coyaud E., Laurent E.M.N., St-Germain J.R., et al. Mutations of the transcriptional corepressor ZMYM2 cause syndromic urinary tract malformations. Am. J. Hum. Genet. 2020;107:727–742. doi: 10.1016/J.AJHG.2020.08.013. PubMed DOI PMC
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., et al. Analysis of protein-coding genetic variation in 60, 706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Bertelsen B., Tümer Z., Ravn K. Three new loci for determining x chromosome inactivation patterns. J. Mol. Diagn. 2011;13:537–540. doi: 10.1016/J.JMOLDX.2011.05.003. PubMed DOI PMC
Machado F.B., Machado F.B., Faria M.A., Lovatel V.L., Alves Da Silva A.F., Radic C.P., De Brasi C.D., Rios Á.F.L., de Sousa Lopes S.M.C., da Silveira L.S., et al. 5meCpG epigenetic marks neighboring a primate-conserved core promoter short tandem repeat indicate X-chromosome inactivation. PLoS One. 2014;9:e103714. doi: 10.1371/JOURNAL.PONE.0103714. PubMed DOI PMC
Mariani V., Biasini M., Barbato A., Schwede T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics. 2013;29:2722–2728. doi: 10.1093/BIOINFORMATICS/BTT473. PubMed DOI PMC
Kumar M., Michael S., Alvarado-Valverde J., Mészáros B., Sámano-Sánchez H., Zeke A., Dobson L., Lazar T., Örd M., Nagpal A., et al. The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res. 2022;50:D497–D508. doi: 10.1093/NAR/GKAB975. PubMed DOI PMC
Johnson D.S., Mortazavi A., Myers R.M., Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316:1497–1502. doi: 10.1126/SCIENCE.1141319/SUPPL_FILE/JOHNSON.SOM-5-30.PDF. PubMed DOI
Petrovski S., Wang Q., Heinzen E.L., Allen A.S., Goldstein D.B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013;9:e1003709. doi: 10.1371/journal.pgen.1003709. PubMed DOI PMC
Landrum M.J., Lee J.M., Benson M., Brown G., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Hoover J., et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D862–D868. doi: 10.1093/nar/gkv1222. PubMed DOI PMC
Chong J.X., Yu J.H., Lorentzen P., Park K.M., Jamal S.M., Tabor H.K., Rauch A., Saenz M.S., Boltshauser E., Patterson K.E., et al. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. Genet. Med. 2016;18:788–795. doi: 10.1038/GIM.2015.161. PubMed DOI PMC
Kumble S., Levy A.M., Punetha J., Gao H., Ah Mew N., Anyane-Yeboa K., Benke P.J., Berger S.M., Bjerglund L., Campos-Xavier B., et al. The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder. Hum. Mutat. 2022;43:266–282. doi: 10.1002/HUMU.24308. PubMed DOI
ENCODE Project Consortium. Kundaje A., Aldred S.F., Collins P.J., Davis C.A., Doyle F., Epstein C.B., Frietze S., Harrow J., Kaul R., et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/NATURE11247. PubMed DOI PMC
Nasser J., Bergman D.T., Fulco C.P., Guckelberger P., Doughty B.R., Patwardhan T.A., Jones T.R., Nguyen T.H., Ulirsch J.C., Lekschas F., et al. Genome-wide enhancer maps link risk variants to disease genes. Nature. 2021;593:238–243. doi: 10.1038/S41586-021-03446-X. PubMed DOI PMC
Gupta A.R., Pirruccello M., Cheng F., Kang H.J., Fernandez T.V., Baskin J.M., Choi M., Liu L., Ercan-Sencicek A.G., Murdoch J.D., et al. Rare deleterious mutations of the gene EFR3A in autism spectrum disorders. Mol. Autism. 2014;5:31. doi: 10.1186/2040-2392-5-31. PubMed DOI PMC
Samocha K.E., Robinson E.B., Sanders S.J., Stevens C., Sabo A., McGrath L.M., Kosmicki J.A., Rehnström K., Mallick S., Kirby A., et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 2014;46:944–950. doi: 10.1038/ng.3050. PubMed DOI PMC