Dynamic release of neuronal extracellular vesicles containing miR-21a-5p is induced by hypoxia
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36594832
PubMed Central
PMC9809533
DOI
10.1002/jev2.12297
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, extracellular vesicle, hypoxia, ischemic stroke, miR-21a-5p, neuron,
- MeSH
- biologické markery metabolismus MeSH
- extracelulární vezikuly * metabolismus MeSH
- lidé MeSH
- mikro RNA * metabolismus MeSH
- neurony metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA * MeSH
Hypoxia induces changes in the secretion of extracellular vesicles (EVs) in several non-neuronal cells and pathological conditions. EVs are packed with biomolecules, such as microRNA(miR)-21-5p, which respond to hypoxia. However, the true EV association of miR-21-5p, and its functional or biomarker relevance, are inadequately characterised. Neurons are extremely sensitive cells, and it is not known whether the secretion of neuronal EVs and miR-21-5p are altered upon hypoxia. Here, we characterised the temporal EV secretion profile and cell viability of neurons under hypoxia. Hypoxia induced a rapid increase of miR-21a-5p secretion in the EVs, which preceded the elevation of hypoxia-induced tissue or cellular miR-21a-5p. Prolonged hypoxia induced cell death and the release of morphologically distinct EVs. The EVs protected miR-21a-5p from enzymatic degradation but a remarkable fraction of miR-21a-5p remained fragile and non-EV associated. The increase in miR-21a-5p secretion may have biomarker potential, as high blood levels of miR-21-5p in stroke patients were associated with significant disability at hospital discharge. Our data provides an understanding of the dynamic regulation of EV secretion from neurons under hypoxia and provides a candidate for the prediction of recovery from ischemic stroke.
BioVendor laboratorni medicina a s Brno Czech Republic
Department of Computer Science University of Verona Verona Veneto Italy
Department of Human Genetics KU Leuven Leuven Flanders Belgium
Department of Immunology University of Arizona Tucson Arizona USA
Department of Pathology Erasmus University Medical Center Rotterdam The Netherlands
Department of Urology Erasmus University Medical Center Rotterdam The Netherlands
Institute for Health and Sport Victoria University Melbourne Victoria Australia
La Trobe Institute for Molecular Science La Trobe University Bundoora Victoria Australia
University of Eastern Finland A 1 Virtanen Institute for Molecular Sciences Kuopio Finland
University of Eastern Finland School of Medicine Kuopio Finland
Zobrazit více v PubMed
An, Y. , Zhao, J. , Nie, F. , Qin, Z. , Xue, H. , Wang, G. , & Li, D. (2019). Exosomes from adipose‐derived stem cells (ADSCs) overexpressing miR‐21 promote vascularization of endothelial cells. Scientific Reports, 9, 1–10. 10.1038/s41598-019-49339-y. PubMed DOI PMC
Anders, S. , Pyl, P. T. , & Huber, W. (2015). HTSeq‐A python framework to work with high‐throughput sequencing data. Bioinformatics, 31, 166–169. 10.1093/bioinformatics/btu638. PubMed DOI PMC
Bister, N. , Pistono, C. , Huremagic, B. , Jolkkonen, J. , Giugno, R. , & Malm, T. (2020). Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. Journal of Extracellular Vesicles, 10, 2001–3078. 10.1002/jev2.12002. PubMed DOI PMC
Bouvy‐Liivrand, M. , Hernández De Sande, A. , Pölönen, P. , Mehtonen, J. , Vuorenmaa, T. , Niskanen, H. , Sinkkonen, L. , Kaikkonen, M. U. , & Heinäniemi, M. (2017). Analysis of primary microRNA loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture. Nucleic Acids Research, 45, 9837–9849. 10.1093/nar/gkx680. PubMed DOI PMC
Buller, B. , Liu, X. , Wang, X. , Zhang, R. L. , Zhang, L. , Hozeska‐Solgot, A. , Chopp, M. , & Zhang, Z. G. (2010). MicroRNA‐21 protects neurons from ischemic death. FEBS Journal, 277, 4299–4307. 10.1111/j.1742-4658.2010.07818.x. PubMed DOI PMC
Chen, X. , Zhou, J. , Li, X. , Wang, X. , Lin, Y. , & Wang, X. (2018). Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor‐promoted phenotype. Cancer Letters, 435, 80–91. 10.1016/j.canlet.2018.08.001. PubMed DOI
Cheng, Y. , Qu, X. , Dong, Z. , Zeng, Q. , Ma, X. , Jia, Y. , Li, R. , Jiang, X. , Williams, C. , Wang, T. , & Xia, W. (2020). Comparison of serum exosome isolation methods on co‐precipitated free microRNAs. PeerJ, 8, e9434. 10.7717/peerj.9434. PubMed DOI PMC
Chistiakov, D. , Orekhov, A. , & Bobryshev, Y. (2016). Cardiac extracellular vesicles in normal and infarcted heart. International Journal of Molecular Sciences, 17, 63. 10.3390/ijms17010063. PubMed DOI PMC
Cui, G. , Wu, J. , Mou, F. , Xie, W. , Wang, F. , Wang, Q. , Fang, J. , Xu, Y. , Dong, Y. , Liu, J. , & Guo, H. (2018). Exosomes derived from hypoxia‐preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 32, 654–668. 10.1096/fj.201700600R. PubMed DOI
Cui, G. , Wu, J. , Mou, F. , Xie, W. , Wang, F. , Wang, Q. , Fang, J. , Xu, Y. , Dong, Y. , Liu, J. , & Guo, H. (2018). Exosomes derived from hypoxia‐preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 32, 654–668. 10.1096/fj.201700600R. PubMed DOI
Dharap, A. , & Vemuganti, R. (2010). Ischemic pre‐conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. Journal of Neurochemistry, 113, 1685–1691. 10.1111/j.1471-4159.2010.06735.x PubMed DOI PMC
Dhungana, H. , Rolova, T. , Savchenko, E. , Wojciechowski, S. , Savolainen, K. , Ruotsalainen, A.‐K. , Sullivan, P. M. , Koistinaho, J. , & Malm, T. (2013). Western‐type diet modulates inflammatory responses and impairs functional outcome following permanent middle cerebral artery occlusion in aged mice expressing the human apolipoprotein E4 allele. Journal of Neuroinflammation, 10, 102. 10.1186/1742-2094-10-102. PubMed DOI PMC
Dong, L. , Wang, Y. , Zheng, T. , Pu, Y. , Ma, Y. , Qi, X. , Zhang, W. , Xue, F. , Shan, Z. , Liu, J. , Wang, X. , & Mao, C. (2021). Hypoxic hUCMSC‐derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Research and Therapy, 12, 1–14. 10.1186/s13287-020-02072-0. PubMed DOI PMC
Gregorius, J. , Wang, C. , Stambouli, O. , Hussner, T. , Qi, Y. , Tertel, T. , Börger, V. , Mohamud Yusuf, A. , Hagemann, N. , Yin, D. , Dittrich, R. , Mouloud, Y. , Mairinger, F. D. , Magraoui, F. E. , Popa‐Wagner, A. , Kleinschnitz, C. , Doeppner, T. R. , Gunzer, M. , Meyer, H. E. , … & Hermann, D. M. (2021). Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Research in Cardiology, 116, 1–19. 10.1007/s00395-021-00881-9. PubMed DOI PMC
Guo, B. B. , Bellingham, S. A. , & Hill, A. F. (2015). The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. Journal of Biological Chemistry, 290, 3455–3467. 10.1074/jbc.M114.605253. PubMed DOI PMC
Guo, X. , Qiu, W. , Liu, Q. , Qian, M. , Wang, S. , Zhang, Z. , Gao, X. , Chen, Z. , Xue, H. , & Li, G. (2018). Immunosuppressive effects of hypoxia‐induced glioma exosomes through myeloid‐derived suppressor cells via the miR‐10a/Rora and miR‐21/Pten pathways. Oncogene, 37, 4239–4259. 10.1038/s41388-018-0261-9. PubMed DOI
Guo, Y. , Tan, J. , Miao, Y. , Sun, Z. , & Zhang, Q. (2019). Effects of microvesicles on cell apoptosis under hypoxia. Oxidative Medicine and Cellular Longevity, 2019, 1–11. 10.1155/2019/5972152. PubMed DOI PMC
Hartjes, T. A. , Slotman, J. A. , Vredenbregt, M. S. , Dits, N. , van der Meel, R. , & Duijvesz, D. , Kulkarni, J. A. , French, P. J. , Van Cappellen, W. A. , Schiffelers, R. M. , Houtsmuller, A. B. , Jenster, G. W. , & Van Royen, M. E. (2020). EVQuant; High‐throughput quantification and characterization of extracellular vesicle (sub)populations. bioRxiv., 2020.10.21.348375. 10.1101/2020.10.21.348375 bioRxiv. DOI
He, Y. , Yao, X. , Taylor, N. , Bai, Y. , Lovenberg, T. , & Bhattacharya, A. (2018). RNA sequencing analysis reveals quiescent microglia isolation methods from postnatal mouse brains and limitations of BV2 cells. Journal of Neuroinflammation, 15, 153. 10.1186/s12974-018-1195-4. PubMed DOI PMC
Heinz, S. , Benner, C. , Spann, N. , Bertolino, E. , Lin, Y. C. , Laslo, P. , Cheng, J. X. , Murre, C. , Singh, H. , & Glass, C. K. (2010). Simple combinations of lineage‐determining transcription factors prime cis‐regulatory elements required for macrophage and B cell identities. Molecular Cell, 38, 576–589. 10.1016/j.molcel.2010.05.004. PubMed DOI PMC
Jovicic, A. , Roshan, R. , Moisoi, N. , Pradervand, S. , Moser, R. , Pillai, B. , & Luthi‐Carter, R. (2013). Comprehensive expression analyses of neural cell‐type‐specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. Annals of Internal Medicine, 33, 5127–5137. 10.1523/JNEUROSCI.0600-12.2013. PubMed DOI PMC
Karttunen, J. , Heiskanen, M. , Lipponen, A. , Poulsen, D. , & Pitkänen, A. (2019). Extracellular vesicles as diagnostics and therapeutics for structural epilepsies. International Journal of Molecular Sciences, 20, 1259. 10.3390/ijms20061259. PubMed DOI PMC
Kingston, E. R. , & Bartel, D. P. (2019). Global analyses of the dynamics of mammalian microRNA metabolism. Genome Research, 29, 1777–1790. 10.1101/gr.251421.119. PubMed DOI PMC
Kozomara, A. , Birgaoanu, M. , & Griffiths‐Jones, S. (2019). From microRNA sequences to function. Nucleic Acids Research, 47, D155–D162. 10.1093/nar/gky1141. PubMed DOI PMC
Lee, S.‐T. , Chu, K. , Jung, K.‐H. , Yoon, H.‐J. , Jeon, D. , Kang, K.‐M. , Park, K.‐H. , Bae, E.‐K. , Kim, M. , Lee, S. K. , & Roh, J.‐K. (2010). MicroRNAs induced during ischemic preconditioning. Stroke; A Journal of Cerebral Circulation, 41, 1646–1651. 10.1161/STROKEAHA.110.579649. PubMed DOI
Li, L. , Cao, B. , Liang, X. , Lu, S. , Luo, H. , Wang, Z. , Wang, S. , Jiang, J. , Lang, J. , & Zhu, G. (2019). Microenvironmental oxygen pressure orchestrates an anti‐ and pro‐tumoral γδ t cell equilibrium via tumor‐derived exosomes. Oncogene, 38, 2830–2843. 10.1038/s41388-018-0627-z PubMed DOI
Li, L. , Jin, S. , & Zhang, Y. (2015). Ischemic preconditioning potentiates the protective effect of mesenchymal stem cells on endotoxin‐induced acute lung injury in mice through secretion of exosome. International Journal of Clinical and Experimental Medicine, 8, 3825–3832. PubMed PMC
Li, L. , Li, C. , Wang, S. , Wang, Z. , Jiang, J. , Wang, W. , Li, X. , Chen, J. , Liu, K. , Li, C. , & Zhu, G. (2016). Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR‐21 to normoxic cells to elicit a prometastatic phenotype. Cancer Research, 76, 1770–1780. 10.1158/0008-5472.CAN-15-1625. PubMed DOI
Loppi, S. , Kolosowska, N. , Kärkkäinen, O. , Korhonen, P. , Huuskonen, M. , Grubman, A. , Dhungana, H. , Wojciechowski, S. , Pomeshchik, Y. , Giordano, M. , Kagechika, H. , White, A. , Auriola, S. , Koistinaho, J. , Landreth, G. , Hanhineva, K. , Kanninen, K. , & Malm, T. (2018). HX600, a synthetic agonist for RXR‐Nurr1 heterodimer complex, prevents ischemia‐induced neuronal damage. Brain, Behavior, and Immunity, 73, 670–681. 10.1016/j.bbi.2018.07.021. PubMed DOI PMC
Love, M. I. , Huber, W. , & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15, 550. 10.1186/s13059-014-0550-8. PubMed DOI PMC
Moore, M. J. , Zhang, C. , Gantman, E. C. , Mele, A. , Darnell, J. C. , & Darnell, R. B. (2014). Mapping argonaute and conventional RNA‐binding protein interactions with RNA at single‐nucleotide resolution using HITS‐CLIP and CIMS analysis. Nature Protocols, 9, 263–293. 10.1038/nprot.2014.012. PubMed DOI PMC
Moreau, P. R. , Tomas Bosch, V. , Bouvy‐Liivrand, M. , Õunap, K. , Örd, T. , Pulkkinen, H. H. , Pölönen, P. , Heinäniemi, M. , Ylö‐Herttuala, S. , Laakkonen, J. P. , Linna‐Kuosmanen, S. , & Kaikkonen, M. U. (2021). Profiling of primary and mature miRNA expression in atherosclerosis associated cell types. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(7), 2149–2167. 10.1161/ATVBAHA.121.315579. PubMed DOI PMC
Pan, T. , Jia, P. , Chen, N. , Fang, Y. , Liang, Y. , Guo, M. , & Ding, X. (2019). Delayed remote ischemic preconditioning confers renoprotection against septic acute kidney injury via exosomal miR‐21. Theranostics, 9, 405–423. 10.7150/thno.29832. PubMed DOI PMC
Park, J. E. , Dutta, B. , Tse, S. W. , Gupta, N. , Tan, C. F. , Low, J. K. , Yeoh, K. W. , Kon, O. L. , Tam, J. P. , & Sze, S. K. (2019). Hypoxia‐induced tumor exosomes promote M2‐like macrophage polarization of infiltrating myeloid cells and microRNA‐mediated metabolic shift. Oncogene, 38, 5158–5173. 10.1038/s41388-019-0782-x. PubMed DOI
Patton, M. C. , Zubair, H. , Khan, M. A. , Singh, S. , & Singh, A. P. (2020). Hypoxia alters the release and size distribution of extracellular vesicles in pancreatic cancer cells to support their adaptive survival. Journal of Cellular Biochemistry, 121, 828–839. 10.1002/jcb.29328.Hypoxia. PubMed DOI PMC
Ren, W. , Hou, J. , Yang, C. , Wang, H. , Wu, S. , Wu, Y. , Zhao, X. , & Lu, C. (2019). Extracellular vesicles secreted by hypoxia pre‐challenged mesenchymal stem cells promote non‐small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR‐21‐5p delivery. Journal of Experimental and Clinical Cancer Research, 38, 1–14. 10.1186/s13046-019-1027-0. PubMed DOI PMC
Ritchie, M. E. , Phipson, B. , Wu, D. , Hu, Y. , Law, C. W. , Shi, W. , & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Research, 43, e47. 10.1093/nar/gkv007. PubMed DOI PMC
Roman‐Canal, B. , Tarragona, J. , Moiola, C. P. , Gatius, S. , Bonnin, S. , Ruiz‐Miró, M. , Sierra, J. E. , Rufas, M. , González, E. , Porcel, J. M. , Gil‐Moreno, A. , Falcón‐Pérez, J. M. , Ponomarenko, J. , Matias‐Guiu, X. , & Colas, E. (2019). EV‐associated miRNAs from peritoneal lavage as potential diagnostic biomarkers in colorectal cancer. Journal of Translational Medicine, 17, 208. 10.1186/s12967-019-1954-8. PubMed DOI PMC
Roobol, S. J. , Hartjes, T. A. , Slotman, J. A. , De Kruijff, R. M. , Torrelo, G. , Abraham, T. E. , Bruchertseifer, F. , Morgenstern, A. , Kanaar, R. , Van Gent, D. C. , Houtsmuller, A. B. , Denkova, A. G. , Van Royen, M. E. , & Essers, J. (2020). Uptake and subcellular distribution of radiolabeled polymersomes for radiotherapy. Nanotheranostics, 4, 14–25. 10.7150/ntno.37080. PubMed DOI PMC
Saura, J. , Tusell, J. M. , & Serratosa, J. (2003). High‐yield isolation of murine microglia by mild trypsinization. Glia, 44, 183–189. 10.1002/glia.10274. PubMed DOI
Schiller, M. , Parcina, M. , Heyder, P. , Foermer, S. , Ostrop, J. , Leo, A. , Heeg, K. , Herrmann, M. , Lorenz, H.‐M. , & Bekeredjian‐Ding, I. (2012). Induction of type I IFN is a physiological immune reaction to apoptotic cell‐derived membrane microparticles. Journal of Immunology (Baltimore, Md : 1950), 189, 1747–1756. 10.4049/jimmunol.1100631. PubMed DOI
Sessa, F. , Maglietta, F. , Bertozzi, G. , Salerno, M. , Di Mizio, G. , Messina, G. , Montana, A. , Ricci, P. , & Pomara, C. (2019). Human brain injury and mirnas: An experimental study. International Journal of Molecular Sciences, 20, 1546. 10.3390/ijms20071546. PubMed DOI PMC
Sork, H. , Conceicao, M. , Corso, G. , Nordin, J. , Lee, Y. X. F. , Krjutskov, K. , Orzechowski Westholm, J. , Vader, P. , Pauwels, M. , Vandenbroucke, R. E. , Wood, M. J. , El Andaloussi, S. , & Mäger, I. (2021). Profiling of extracellular small RNAs highlights a strong bias towards non‐vesicular secretion. Cells, 10, 1543. 10.3390/cells10061543. PubMed DOI PMC
Théry, C. , Boussac, M. , Véron, P. , Ricciardi‐Castagnoli, P. , Raposo, G. , Garin, J. , & Amigorena, S. (2001). Proteomic analysis of dendritic cell‐derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. The Journal of Immunology, 166, 7309–7318. 10.4049/jimmunol.166.12.7309. PubMed DOI
Théry, C. , Witwer, K. W. , Aikawa, E. , Alcaraz, M. J. , Anderson, J. D. , Andriantsitohaina, R. , Antoniou, A. , Arab, T. , Archer, F. , Atkin‐Smith, G. K. , Ayre, D. C. , Bach, J.‐M. , Bachurski, D. , Baharvand, H. , Balaj, L. , Baldacchino, S. , Bauer, N. N. , Baxter, A. A. , Bebawy, M. , … Zuba‐Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750. 10.1080/20013078.2018.1535750. PubMed DOI PMC
Tsai, P.‐C. , Liao, Y.‐C. , Wang, Y.‐S. , Lin, H.‐F. , Lin, R.‐T. , & Juo, S.‐H. H. (2013). Serum microrna‐21 and microrna‐221 as potential biomarkers for cerebrovascular disease. Journal of Vascular Research, 50, 346–354. 10.1159/000351767. PubMed DOI
Tucher, C. , Bode, K. , Schiller, P. , ClaãŸEn, L. , Birr, C. , Souto‐Carneiro, M. M. , Blank, N. , Lorenz, H.‐M. , & Schiller, M. (2018). Extracellular vesicle subtypes released from activated or apoptotic T‐lymphocytes carry a specific and stimulus‐dependent protein cargo. Frontiers in Immunology, 9, 1–13. 10.3389/fimmu.2018.00534. PubMed DOI PMC
Venturella, M. , Criscuoli, M. , Carraro, F. , Naldini, A. , & Zocco, D. (2021). Interplay between hypoxia and extracellular vesicles in cancer and inflammation. Biology, 10, 606. PubMed PMC
Walbrecq, G. , Margue, C. , Behrmann, I. , & Kreis, S. (2020). Distinct cargos of small extracellular vesicles derived from hypoxic cells and their effect on cancer cells. International Journal of Molecular Sciences, 21, 1–19. 10.3390/ijms21145071. PubMed DOI PMC
Wang, F. , Cerione, R. A. , & Antonyak, M. A. (2021). Isolation and characterization of extracellular vesicles produced by cell lines. STAR Protocols, 2, 100295. 10.1016/j.xpro.2021.100295. PubMed DOI PMC
Wang, J. , Zhu, Y. , Jin, F. , Tang, L. , He, Z. , & He, Z. (2016). Differential expression of circulating microRNAs in blood and haematoma samples from patients with intracerebral haemorrhage. Journal of International Medical Research, 44, 419–432. 10.1177/0300060516630852. PubMed DOI PMC
Webber, J. , & Clayton, A. (2013). How pure are your vesicles? Journal of Extracellular Vesicles, 2, 19861. 10.3402/jev.v2i0.19861. PubMed DOI PMC
Wei, Z. , Chen, Z. , Zhao, Y. , Fan, F. , Xiong, W. , Song, S. , Yin, Y. , Hu, J. , Yang, K. , Yang, L. , Xu, B. , & Ge, J. (2021). Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials, 275, 121000. 10.1016/j.biomaterials.2021.121000. PubMed DOI
Wickman, G. R. , Julian, L. , Mardilovich, K. , Schumacher, S. , Munro, J. , Rath, N. , Zander, S. A. , Mleczak, A. , Sumpton, D. , Morrice, N. , Bienvenut, W. V. , & Olson, M. F. (2013). Blebs produced by actin‐myosin contraction during apoptosis release damage‐associated molecular pattern proteins before secondary necrosis occurs. Cell Death and Differentiation, 20, 1293–1305. 10.1038/cdd.2013.69. PubMed DOI PMC
Witwer, K. W. , Buzás, E. I. , Bemis, L. T. , Bora, A. , Lässer, C. , Lötvall, J. , Nolte‐'t Hoen, E. N. , Piper, M. G. , Sivaraman, S. , Skog, J. , Théry, C. , Wauben, M. H. , & Hochberg, F. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles, 2, 20360. 10.3402/jev.v2i0.20360. PubMed DOI PMC
Wu, J. , Fan, C.‐L. , Ma, L.‐J. , Liu, T. , Wang, C. , Song, J.‐X. , Lv, Q.‐S. , Pan, H. , Zhang, C.‐N. , & Wang, J.‐J. (2017). Distinctive expression signatures of serum microRNAs in ischaemic stroke and transient ischaemic attack patients. Thrombosis and Haemostasis, 117, 992–1001. 10.1160/TH16-08-0606. PubMed DOI
Xiang, Y. , Guo, J. , Peng, Y.‐F. , Tan, T. , Huang, H.‐T. , Luo, H.‐C. , & Wei, Y.‐S. (2017). Association of miR‐21, miR‐126 and miR‐605 gene polymorphisms with ischemic stroke risk. Oncotarget, 8, 95755–95763. 10.18632/oncotarget.21316. PubMed DOI PMC
Xin, D. , Li, T. , Chu, X. , Ke, H. , Yu, Z. , Cao, L. , Bai, X. , Liu, D. , & Wang, Z. (2020). Mesenchymal stromal cell‐derived extracellular vesicles modulate microglia/macrophage polarization and protect the brain against hypoxia‐ischemic injury in neonatal mice by targeting delivery of miR‐21a‐5p. Acta Biomaterialia, 113, 597–613. 10.1016/j.actbio.2020.06.037. PubMed DOI
Xu, H. , Ling, M. , Xue, J. , Dai, X. , Sun, Q. , Chen, C. , Liu, Y. , Zhou, L. , Liu, J. , Luo, F. , Bian, Q. , & Liu, Q. (2018). Exosomal microRNA‐21 derived from bronchial epithelial cells is involved in aberrant epithelium‐fibroblast cross‐talk in COPD induced by cigarette smoking. Theranostics, 8, 5419–5433. 10.7150/thno.27876. PubMed DOI PMC
Yaghoubi, S. , Najminejad, H. , Dabaghian, M. , Karimi, M. H. , Abdollahpour‐Alitappeh, M. , Rad, F. , Mahi‐Birjand, M. , Mohammadi, S. , Mohseni, F. , Sobhani Lari, M. , Teymouri, G. H. , Rigi Yousofabadi, E. , Salmani, A. , & Bagheri, N. (2020). How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment? Iubmb Life, 72, 1286–1305. 10.1002/iub.2275. PubMed DOI
Zhang, L. , Dong, L.‐Y. , Li, Y.‐J. , Hong, Z. , & Wei, W.‐S. (2012). miR‐21 represses FasL in microglia and protects against microglia‐mediated neuronal cell death following hypoxia/ischemia. Glia, 60, 1888–1895. 10.1002/glia.22404. PubMed DOI
Zhang, X. , Sai, B. , Wang, F. , Wang, L. , Wang, Y. , Zheng, L. , Li, G. , Tang, J. , & Xiang, J. (2019). Hypoxic BMSC‐derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3‐induced EMT. Molecular Cancer, 18, 1–15. 10.1186/s12943-019-0959-5. PubMed DOI PMC
Zhou, J. , & Zhang, J. (2014). Identification of miRNA‐21 and miRNA‐24 in plasma as potential early stage markers of acute cerebral infarction. Molecular Medicine Reports, 10, 971–976. 10.3892/mmr.2014.2245. PubMed DOI
Zhou, Y. , Zhou, B. , Pache, L. , Chang, M. , Khodabakhshi, A. H. , Tanaseichuk, O. , Benner, C. , & Chanda, S. K. (2019). Metascape provides a biologist‐oriented resource for the analysis of systems‐level datasets. Nature Communications, 10, 1523. 10.1038/s41467-019-09234-6. PubMed DOI PMC
Ziu, M. , Fletcher, L. , Rana, S. , Jimenez, D. F. , & Digicaylioglu, M. (2011). Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS ONE, 6, e14724. 10.1371/journal.pone.0014724. PubMed DOI PMC