• This record comes from PubMed

Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment

. 2023 Apr ; 44 (7-8) : 675-688. [epub] 20230124

Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off. In tbdITP, the anolyte and catholyte provide the leading ions and the pI 7 CA or the reactive boundary of the counter-migrating H3 O+ and OH- ions serves as the shared terminator. The outcome of the tbdITP process is determined by the ionic mobilities, pKa values, and loaded amounts of all ionic and ionizable components: It is constrained by both the transmitted amount of charge and the migration space available for the leading ions. tbdITP and the resulting pH gradient can never reach steady state with respect to the spatial coordinate of the separation channel.

See more in PubMed

Vigh G, Gas B. Evolution of the theoretical description of the isoelectric focusing experiment: I. The path from Svensson's steady state model to the current two-stage model of isoelectric focusing. Electrophoresis. 2023;44:667-74.

Svendsen PJ, Schafer-Nielsen C. Computer simulation of model isoelectric focusing experiments. In Stathakos D, editor. Electrophoresis ‘82: advanced methods, biochemical, and clinical applications. Berlin: Walter de Gruyter; 1983. p. 83-8.

Gidding CJ. Unified separation science. New York: Wiley-Interscience; 1991.

Everaerts FM, Beckers JL, Verheggen TPEM. Isotachophoresis: theory, instrumentation and applications (J Chromatogr. Library, Vol. 6). Amsterdam, Oxford, New York: Elsevier; 1976.

Gebauer P, Bocek P. Zone order in isotachophoresis: the concept of the zone existence diagram and its use in cationic systems. J Chromatogr. 1983;267:49-65.

Kohlraush F. Ueber concentrations: verschiebungen durch electrolyse im inneren von lösungen und lösungsgemischen. Ann Phys Chem. 1897;62:209-39.

Thormann W, Arn D, Schumacher E. Bidirectional analytical isotachophoresis: simultaneous determination of anionic and cationic boundaries. Electrophoresis. 1985;6:10-18.

Hirokawa T, Watanabe K, Yokota Y, Kiso Y. Bidirectional isotachophoresis. 1. Verification of bidirectional isotachophoresis and simultaneous determination of anionic and cationic components. J Chromatogr. 1993;633:251-9.

Hirokawa, T. Bidirectional isotachophoresis. 2. Fifteen electrolyte systems covering the pH range 3.5 to 10. J Chromatogr A. 1994;686:158-63.

Oshurkova OV, Gorshkov AI, Nesterov VP. Use of counterflow in bidirectional capillary isotachophoresis. Russ J Electrochem. 2004;40:516-20.

Bahga SS, Chambers RD, Santiago JG. Coupled isotachophoretic preconcentration and electrophoretic separation using bidirectional isotachophoresis. Anal Chem. 2011;83:6154-62.

Slais K, Stastna M. Electrolyte system for fast preparative focusing in wide pH range based on bidirectional isotachophoresis. Electrophoresis. 2014;35:2438-45.

Stastna M, Slais K. Continuous fast focusing in a trapezoidal void channel based on bidirectional isotachophoresis in a wide pH range. Electrophoresis. 2015;36:2579-86.

Krivankova L, Foret F, Gebauer P, Bocek P. Selection of electrolyte systems in isotachophoresis. J Chromatogr. 1987;390:3-16.

Bocek P, Gebauer P, Deml M. Migration behavior of the hydrogen-ion and its role in isotachophoresis of cations. J Chromatogr. 1981;217:209-24.

Bocek P, Gebauer P, Deml M. Concept of the effective mobility of the hydrogen-ion and its use in cationic isotachophoresis. J Chromatogr. 1981;219:21-8.

Jaros M, Hruska V, Stedry M, Zuskova I, Gas B. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster. Electrophoresis. 2004;25:3080-5.

Maly M, Dovhunova M, Dvorak M, Gerlero GS, Kler PA, Hruska V, et al. Generalized model of the linear theory of electromigration and its application to electrokinetic chromatography: theory and software PeakMaster 6 - next generation. Electrophoresis. 2019;40:683-92.

Chrambach A, Doerr P, Finnlayson GR, Miles LE, Sherins R, Rodbard D. Instability of pH gradients formed by isoelectric focusing in polyacrylamide gel. Ann NY Acad Sci. 1973;209:44-64.

Hruska V, Jaros M, Gas B. Simul 5 - free dynamic simulator of electrophoresis. Electrophoresis. 2006;27:984-91.

Gas B, Bravenec P. Simul 6: a fast dynamic simulator of electromigration. Electrophoresis. 2021;42:1291-9.

Bahga SS, Bercovici M, Santiago JG. Ionic strength effects on electrophoretic focusing and separations. Electrophoresis. 2010;31:910-9.

Hwang A. Synthesis of UV-Absorbing Carrier Ampholytes for Characterization of Isoelectric Membranes. M.S. Thesis. College Station, TX: Texas A&M University; 2005.

North RY, Hwang A, Lalwani S, Shave E, Vigh G. Synthesis of UV-absorbing and fluorescent carrier ampholyte mixtures and their application for the determination of the operational pH values of buffering membranes used in isoelectric trapping separations. J Chromatogr A. 2006;1130:232-7.

North RY, Vigh G. Determination of the operational pH value of a buffering membrane by an isoelectric trapping separation of a carrier ampholyte mixture. Electrophoresis. 2008;29:1077-81.

Mack S, Cruzado-Park I, Chapman J, Ratnayake C, Vigh G. A systematic study in CIEF: defining and optimizing experimental parameters critical to method reproducibility and robustness. Electrophoresis. 2009;30:4049-58.

Stedry M, Jaros M, Hruska V, Gas, B. Eigenmobilities in background electrolytes for capillary zone electrophoresis: III Linear theory of electromigration. Electrophoresis. 2004; 25:3071-9.

Hirokawa T, Nishino M, Aoki N, Kiso Y, Sawamoto Y, Yagi T, et al. Table of isotachophoretic indexes. 1. Simulated qualitative and quantitative indexes of 287 anionic substances in the range pH 3-10. J Chromatogr. 1983;271:D1-106.

Hruska V, Gas B, Vigh G. Simulation of desalting that occurs during isoelectric trapping separations. Electrophoresis. 2009;30:433-43.

Wu JQ, Pawliszyn J. Universal detection for capillary isoelectric-focusing without mobilization using a concentration gradient imaging-system. Anal Chem. 1992;64:224-7.

Bahga SS, Bercovici M, Santiago JG. Robust and high-resolution simulations of nonlinear electrokinetic processes in variable cross-section channels. Electrophoresis. 2012;33:3036-51.

Fitch CA, Platzer G, Okon M, Garcia-Moreno B, McIntosh LP. Arginine: its pK(a) value revisited. Protein Sci. 2015;24:752-61.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...