Non-ergodic fragmentation upon collision-induced activation of cysteine-water cluster cations
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 31149
Austrian Science Fund FWF - Austria
PubMed
36647750
PubMed Central
PMC9930733
DOI
10.1039/d2cp04172c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cysteine-water cluster cations Cys(H2O)3,6+ and Cys(H2O)3,6H+ are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collision-induced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies from DFT calculations showing that clusters do not only fragment exclusively by sequential emission of single water molecules but also by the release of small water clusters. Release of clustered water is observed also in the ADMP (atom centered density matrix propagation) molecular dynamics model of small Cys(H2O)3+ and Cys(H2O)3H+ clusters. For large clusters Cys(H2O)6+ and Cys(H2O)6H+ the less computationally demanding statistical Microcanonical Metropolis Monte-Carlo method (M3C) is used to model the experimental fragmentation patterns. We are able to detail the energy redistribution in clusters upon collision activation. In the present case, about two thirds of the collision energy redistribute via an ergodic process, while the remaining one third is transferred into a non-ergodic channel leading to ejection of a single water molecule from the cluster. In contrast to molecular fragmentation, which can be well described by statistical models, modelling of collision-induced activation of weakly bound clusters requires inclusion of non-ergodic processes.
Condensed Matter Physics Center Universidad Autónoma de Madrid 28049 Madrid Spain
Departamento de Química Universidad Autónoma de Madrid 28049 Madrid Spain
Institute for Ion Physics and Applied Physics University of Innsbruck Austria
Software for Chemistry and Materials Amsterdam The Netherlands
Zobrazit více v PubMed
McLafferty F. W. Bente P. F. Kornfeld R. Tsai S.-C. Howe I. J. Am. Chem. Soc. 1973;95:2120–2129. doi: 10.1021/ja00788a007. DOI
McLafferty F. W. Annu. Rev. Anal. Chem. 2011;4:1–22. doi: 10.1146/annurev-anchem-061010-114018. PubMed DOI
Sleno L. Volmer D. A. J. Mass Spectrom. 2004;39:1091–1112. doi: 10.1002/jms.703. PubMed DOI
Wesdemiotis C. Solak N. Polce M. J. Dabney D. E. Chaicharoen K. Katzenmeyer B. C. Mass Spectrom. Rev. 2011;30:523–559. doi: 10.1002/mas.20282. PubMed DOI
Kind T. Tsugawa H. Cajka T. Ma Y. Lai Z. Mehta S. S. Wohlgemuth G. Barupal D. K. Showalter M. R. Arita M. Fiehn O. Mass Spectrom. Rev. 2018;37:513–532. doi: 10.1002/mas.21535. PubMed DOI PMC
Johnson A. R. Carlson E. E. Anal. Chem. 2015;87:10668–10678. doi: 10.1021/acs.analchem.5b01543. PubMed DOI
Armentrout P. B. Int. J. Mass Spectrom. 2000;200:219–241. doi: 10.1016/S1387-3806(00)00310-9. DOI
Armentrout P. B. J. Am. Soc. Mass Spectrom. 2002;13:419–434. doi: 10.1016/S1044-0305(02)00347-1. PubMed DOI
Elkind J. L. Armentrout P. B. J. Phys. Chem. 1985;89:5626–5636. doi: 10.1021/j100272a012. DOI
Armentrout P. B. Annu. Rev. Phys. Chem. 2001;52:423–461. doi: 10.1146/annurev.physchem.52.1.423. PubMed DOI
Johnson G. E. Laskin J. Analyst. 2016;141:3573–3589. doi: 10.1039/C6AN00263C. PubMed DOI
Chakraborty P. Pradeep T. NPG Asia Mater. 2019;11:48. doi: 10.1038/s41427-019-0149-3. DOI
Ervin K. M. Armentrout P. B. J. Phys. Chem. 1985;83:166–189. doi: 10.1063/1.449799. DOI
Haler J. R. N. Massonnet P. Far J. de la Rosa V. R. Lecomte P. Hoogenboom R. Jérôme C. De Pauw E. J. Am. Soc. Mass Spectrom. 2019;30:563–572. doi: 10.1007/s13361-018-2115-7. PubMed DOI
Benesch J. L. P. J. Am. Soc. Mass Spectrom. 2009;20:341–348. doi: 10.1016/j.jasms.2008.11.014. PubMed DOI
More M. B. Ray D. Armentrout P. B. J. Am. Chem. Soc. 1999;121:417–423. doi: 10.1021/ja9823159. DOI
Rodgers M. T. Ervin K. M. Armentrout P. B. J. Phys. Chem. 1997;106:4499–4508. doi: 10.1063/1.473494. DOI
Armentrout P. B. Ervin K. M. Rodgers M. T. J. Phys. Chem. A. 2008;112:10071–10085. doi: 10.1021/jp805343h. PubMed DOI
Truhlar D. G. Garrett B. C. Klippenstein S. J. J. Phys. Chem. 1996;100:12771–12800. doi: 10.1021/jp953748q. DOI
El-Khairy L. Ueland P. M. Refsum H. Graham I. M. Vollset S. E. Circulation. 2001;103:2544–2549. doi: 10.1161/01.CIR.103.21.2544. PubMed DOI
Waziri R. Wilson R. Sherman A. D. Br. J. Psychiatry. 1983;143:69–73. doi: 10.1192/bjp.143.1.69. PubMed DOI
Parodi O. De Chiara B. Baldassarre D. Parolini M. Caruso R. Pustina L. Parodi G. Campolo J. Sedda V. Baudo F. Sirtori C. Clin. Biochem. 2007;40:188–193. doi: 10.1016/j.clinbiochem.2006.08.017. PubMed DOI
Paulsen C. E. Carroll K. S. Chem. Rev. 2013;113:4633–4679. doi: 10.1021/cr300163e. PubMed DOI PMC
Mohorko N. Petelin A. Jurdana M. Biolo G. Jenko-Pražnikar Z. BioMed Res. Int. 2015;2015:418681. PubMed PMC
Lin J. Lee I.-M. Song Y. Cook N. R. Selhub J. Manson J. E. Buring J. E. Zhang S. M. Cancer Res. 2010;70:2397–2405. doi: 10.1158/0008-5472.CAN-09-3648. PubMed DOI PMC
Rehman T. Shabbir M. A. Inam-Ur-Raheem M. Manzoor M. F. Ahmad N. Liu Z.-W. Ahmad M. H. Siddeeg A. Abid M. Aadil R. M. Food Sci. Nutr. 2020;8:4696–4707. doi: 10.1002/fsn3.1818. PubMed DOI PMC
Serpa J. Front. Oncol. 2020;10:947. doi: 10.3389/fonc.2020.00947. PubMed DOI PMC
Daher B. Vučetić M. Pouysségur J. Front. Oncol. 2020;10:723. doi: 10.3389/fonc.2020.00723. PubMed DOI PMC
Bonifácio V. D. B. Pereira S. A. Serpa J. Vicente J. B. Br. J. Cancer. 2021;124:862–879. doi: 10.1038/s41416-020-01156-1. PubMed DOI PMC
Wu G. Fang Y.-Z. Yang S. Lupton J. R. Turner N. D. J. Nutr. 2004;134:489–492. doi: 10.1093/jn/134.3.489. PubMed DOI
Villarama C. D. Maibach H. I. Int. J. Cosmet. Sci. 2005;27:147–153. doi: 10.1111/j.1467-2494.2005.00235.x. PubMed DOI
Winstead J. A. Radiat. Res. 1967;30:832–840. doi: 10.2307/3572148. PubMed DOI
Sanner T. Pihl A. Scand. J. Clin. Lab. Invest. 1968;21:53–63. doi: 10.1080/00365516809168202. PubMed DOI
Xu G. Chance M. R. Anal. Chem. 2005;77:2437–2449. doi: 10.1021/ac0484629. PubMed DOI
Markakis P. Tappel A. L. J. Am. Chem. Soc. 1960;82:1613–1617. doi: 10.1021/ja01492a025. DOI
Göbbels L. Poehlein A. Dumnitch A. Egelkamp R. Kröger C. Haerdter J. Hackl T. Feld A. Weller H. Daniel R. Streit W. R. Schoelmerich M. C. Sci. Rep. 2021;11:2139. doi: 10.1038/s41598-021-81103-z. PubMed DOI PMC
Ataman E. Isvoranu C. Andersen J. N. Schnadt J. Schulte K. J. Phys. Chem. Lett. 2011;2:1677–1681. doi: 10.1021/jz2006918. DOI
Bachrach S. M. Nguyen T. T. Demoin D. W. J. Phys. Chem. A. 2009;113:6172–6181. doi: 10.1021/jp901491p. PubMed DOI
Canle L M. Ramos D. R. Santaballa J. Chem. Phys. Lett. 2006;417:28–33. doi: 10.1016/j.cplett.2005.09.086. DOI
Pathak A. K. Chem. Phys. Lett. 2014;610–611:345–350. doi: 10.1016/j.cplett.2014.07.058. DOI
Sarangi R. Frank P. Benfatto M. Morante S. Minicozzi V. Hedman B. Hodgson K. O. J. Chem. Phys. 2012;137:205103. doi: 10.1063/1.4767350. PubMed DOI PMC
Su C.-C. Yu Y. Chang P.-C. Chen Y.-W. Chen I.-Y. Lee Y.-Y. Wang C. C. J. Phys. Chem. Lett. 2015;6:817–823. doi: 10.1021/acs.jpclett.5b00002. PubMed DOI
Risberg E. D. Jalilehvand F. Leung B. O. Pettersson L. G. M. Sandström M. Dalton Trans. 2009:3542–3558. doi: 10.1039/B819257J. PubMed DOI
de Oliveira C. X. Mocellin A. Menezes de Souza Lima F. de Jesus Chaves Neto A. M. Lima Azevedo D. ChemistrySelect. 2020;5:439–447. doi: 10.1002/slct.201903453. DOI
Laksman J. Kooser K. Levola H. Itälä E. Ha D. T. Rachlew E. Kukk E. J. Phys. Chem. B. 2014;118:11688–11695. doi: 10.1021/jp508161s. PubMed DOI
Abdoul-Carime H. Gohlke S. Illenberger E. Phys. Chem. Chem. Phys. 2004;6:161–164. doi: 10.1039/B311675A. DOI
Muftakhov M. V. Shchukin P. V. Russ. J. Phys. Chem. A. 2020;94:102–109. doi: 10.1134/S0036024420010240. DOI
Sato S. He Z. Kaneda M. Imai M. Tsuchida H. Itoh A. Nucl. Instrum. Methods Phys. Res., Sect. B. 2007;256:506–509. doi: 10.1016/j.nimb.2006.12.050. DOI
Aflatooni K. Hitt B. Gallup G. A. Burrow P. D. J. Chem. Phys. 2001;115:6489–6494. doi: 10.1063/1.1404147. DOI
Abdoul-Carime H. Sanche L. J. Phys. Chem. B. 2004;108:457–464. doi: 10.1021/jp030413x. DOI
Choi S.-S. Song M. J. Kim O.-B. Kim Y. Rapid Commun. Mass Spectrom. 2013;27:143–151. doi: 10.1002/rcm.6411. PubMed DOI
Zhang P. Chan W. Ang I. L. Wei R. Lam M. M. T. Lei K. M. K. Poon T. C. W. Sci. Rep. 2019;9:6453. doi: 10.1038/s41598-019-42777-8. PubMed DOI PMC
Piraud M. Vianey-Saban C. Petritis K. Elfakir C. Steghens J.-P. Morla A. Bouchu D. Rapid Commun. Mass Spectrom. 2003;17:1297–1311. doi: 10.1002/rcm.1054. PubMed DOI
Ryzhov V. Lam A. K. Y. OHair R. A. J. J. Am. Soc. Mass Spectrom. 2009;20:985–995. doi: 10.1016/j.jasms.2008.12.026. PubMed DOI
Rogalewicz F. Hoppilliard Y. Ohanessian G. Int. J. Mass Spectrom. 2000;195–196:565–590. doi: 10.1016/S1387-3806(99)00225-0. DOI
Armentrout P. B. Stennett E. M. S. J. Am. Soc. Mass Spectrom. 2014;25:512–523. doi: 10.1007/s13361-013-0817-4. PubMed DOI
Tiefenthaler L. Ameixa J. Martini P. Albertini S. Ballauf L. Zankl M. Goulart M. Laimer F. von Haeften K. Zappa F. Scheier P. Rev. Sci. Instrum. 2020;91:033315. doi: 10.1063/1.5133112. PubMed DOI
Díaz-Tendero S. Hervieux P.-A. Alcamí M. Martín F. Phys. Rev. A: At., Mol., Opt. Phys. 2005;71:033202. doi: 10.1103/PhysRevA.71.033202. DOI
Aguirre N. F. Díaz-Tendero S. Hervieux P.-A. Alcamí M. Martín F. J. Chem. Theory Comput. 2017;13:992–1009. doi: 10.1021/acs.jctc.6b00984. PubMed DOI
Gomez L. F. Loginov E. Sliter R. Vilesov A. F. J. Phys. Chem. 2011;135:154201. doi: 10.1063/1.3650235. PubMed DOI
Laimer F. Kranabetter L. Tiefenthaler L. Albertini S. Zappa F. Ellis A. M. Gatchell M. Scheier P. Phys. Rev. Lett. 2019;123:165301. doi: 10.1103/PhysRevLett.123.165301. PubMed DOI
Laimer F. Zappa F. Scheier P. J. Phys. Chem. A. 2021;125:7662–7669. doi: 10.1021/acs.jpca.1c05619. PubMed DOI PMC
Mauracher A. Echt O. Ellis A. Yang S. Bohme D. Postler J. Kaiser A. Denifl S. Scheier P. Phys. Rep. 2018;751:1–90. doi: 10.1016/j.physrep.2018.05.001. DOI
Lalanne M. R. Achazi G. Reichwald S. Lindinger A. Eur. Phys. J. D. 2015;69:280. doi: 10.1140/epjd/e2015-60245-x. DOI
Tiefenthaler L. Ončák M. Kollotzek S. Kočišek J. Scheier P. J. Phys. Chem. A. 2020;124:8439–8445. doi: 10.1021/acs.jpca.0c07208. PubMed DOI PMC
Tiefenthaler L. Kočišek J. Scheier P. Eur. Phys. J. D. 2020;74:85. doi: 10.1140/epjd/e2020-10014-y. DOI
Klassen J. S. Kebarle P. J. Am. Chem. Soc. 1997;119:6552–6563. doi: 10.1021/ja962813m. DOI
Erdmann E. abuda M. Aguirre N. F. Díaz-Tendero S. Alcamí M. J. Phys. Chem. A. 2018;122:4153–4166. doi: 10.1021/acs.jpca.8b00881. PubMed DOI
Erdmann E. Aguirre N. F. Indrajith S. Chiarinelli J. Domaracka A. Rousseau P. Huber B. A. Bolognesi P. Richter R. Avaldi L. Díaz-Tendero S. Alcamí M. Abuda M. Phys. Chem. Chem. Phys. 2021;23:1859–1867. doi: 10.1039/D0CP04890A. PubMed DOI
Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.
Clark T. Chandrasekhar J. Spitznagel G. W. Schleyer P. V. R. J. Comput. Chem. 1983;4:294–301. doi: 10.1002/jcc.540040303. DOI
Hariharan P. C. Pople J. A. Theor. Chim. Acta. 1973;28:213–222. doi: 10.1007/BF00533485. DOI
Hehre W. J. Ditchfield R. Pople J. A. J. Chem. Phys. 1972;56:2257–2261. doi: 10.1063/1.1677527. DOI
Mardirossian N. Head-Gordon M. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI
Bachrach S. M. Nguyen T. T. Demoin D. W. J. Phys. Chem. A. 2009;113:6172–6181. doi: 10.1021/jp901491p. PubMed DOI
Schlegel H. B. Millam J. M. Iyengar S. S. Voth G. A. Daniels A. D. Scuseria G. E. Frisch M. J. J. Chem. Phys. 2001;114:9758–9763. doi: 10.1063/1.1372182. DOI
Iyengar S. S. Schlegel H. B. Millam J. M. Voth G. A. Scuseria G. E. Frisch M. J. J. Chem. Phys. 2001;115:10291–10302. doi: 10.1063/1.1416876. DOI
Schlegel H. B. Iyengar S. S. Li X. Millam J. M. Voth G. A. Scuseria G. E. Frisch M. J. J. Chem. Phys. 2002;117:8694–8704. doi: 10.1063/1.1514582. DOI
Aguirre N. F., Díaz-Tendero S., Hervieux P.-A., Alcamí M. and Martín F., M3C (Microcanonical Metropolis Monte–Carlo), 2020, https://github.com/nfaguirrec/M3C
Maheshwary S. Patel N. Sathyamurthy N. Kulkarni A. D. Gadre S. R. J. Phys. Chem. A. 2001;105:10525–10537. doi: 10.1021/jp013141b. DOI
Hodges M. P. Wales D. J. Chem. Phys. Lett. 2000;324:279–288. doi: 10.1016/S0009-2614(00)00584-4. DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 09 Revision E.01, Gaussian Inc., Wallingford CT, 2016
Armentrout P. B. Mass Spectrom. Rev. 2021 doi: 10.1002/mas.21723. PubMed DOI
Reutt J. E. Wang L. S. Lee Y. T. Shirley D. A. J. Chem. Phys. 1986;85:6928–6939. doi: 10.1063/1.451379. DOI
Ng C. Y. Trevor D. J. Tiedemann P. W. Ceyer S. T. Kronebusch P. L. Mahan B. H. Lee Y. T. J. Chem. Phys. 1977;67:4235–4237. doi: 10.1063/1.435404. DOI
Verma P. Ghosh D. Dutta A. K. J. Phys. Chem. A. 2021;125:4683–4694. doi: 10.1021/acs.jpca.0c10199. PubMed DOI
Braud I. Zamith S. Cuny J. Zheng L. LHermite J.-M. J. Chem. Phys. 2019;150:014303. doi: 10.1063/1.5044481. PubMed DOI
Mattioli G. Avaldi L. Bolognesi P. Bozek J. D. Castrovilli M. C. Chiarinelli J. Domaracka A. Indrajith S. Maclot S. Milosavljević A. R. Nicolafrancesco C. Rousseau P. Phys. Chem. Chem. Phys. 2021;23:15049–15058. doi: 10.1039/D1CP02031E. PubMed DOI
Morgan S. Castleman A. W. J. Phys. Chem. 1989;93:4544–4550. doi: 10.1021/j100348a031. DOI
Morgan S. Keesee R. G. Castleman A. W. J. Am. Chem. Soc. 1989;111:3841–3845. doi: 10.1021/ja00193a014. DOI
Ganguly S. Barreiro-Lage D. Walsh N. Oostenrijk B. Sorensen S. L. DÃaz-Tendero S. Gisselbrecht M. Commun. Chem. 2022;5:16. doi: 10.1038/s42004-022-00629-z. PubMed DOI PMC
Sedmidubská B. Luxford T. F. M. Kočišek J. Phys. Chem. Chem. Phys. 2021;23:21501–21511. doi: 10.1039/D1CP02686K. PubMed DOI
Abdoul-Carime H. Berthias F. Feketeová L. Marciante M. Calvo F. Forquet V. Chermette H. Farizon B. Farizon M. Märk T. D. Angew. Chem., Int. Ed. 2015;54:14685–14689. doi: 10.1002/anie.201505890. PubMed DOI PMC
Zheng L. Cuny J. Zamith S. L’Hermite J.-M. Rapacioli M. Phys. Chem. Chem. Phys. 2021;23:27404–27416. doi: 10.1039/D1CP03228C. PubMed DOI
Gatchell M. Ameixa J. Ji M. Stockett M. H. Simonsson A. Denifl S. Cederquist H. Schmidt H. T. Zettergren H. Nat. Commun. 2021;12:6646. doi: 10.1038/s41467-021-26899-0. PubMed DOI PMC