Non-ergodic fragmentation upon collision-induced activation of cysteine-water cluster cations

. 2023 Feb 15 ; 25 (7) : 5361-5371. [epub] 20230215

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36647750

Grantová podpora
P 31149 Austrian Science Fund FWF - Austria

Cysteine-water cluster cations Cys(H2O)3,6+ and Cys(H2O)3,6H+ are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collision-induced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies from DFT calculations showing that clusters do not only fragment exclusively by sequential emission of single water molecules but also by the release of small water clusters. Release of clustered water is observed also in the ADMP (atom centered density matrix propagation) molecular dynamics model of small Cys(H2O)3+ and Cys(H2O)3H+ clusters. For large clusters Cys(H2O)6+ and Cys(H2O)6H+ the less computationally demanding statistical Microcanonical Metropolis Monte-Carlo method (M3C) is used to model the experimental fragmentation patterns. We are able to detail the energy redistribution in clusters upon collision activation. In the present case, about two thirds of the collision energy redistribute via an ergodic process, while the remaining one third is transferred into a non-ergodic channel leading to ejection of a single water molecule from the cluster. In contrast to molecular fragmentation, which can be well described by statistical models, modelling of collision-induced activation of weakly bound clusters requires inclusion of non-ergodic processes.

Zobrazit více v PubMed

McLafferty F. W. Bente P. F. Kornfeld R. Tsai S.-C. Howe I. J. Am. Chem. Soc. 1973;95:2120–2129. doi: 10.1021/ja00788a007. DOI

McLafferty F. W. Annu. Rev. Anal. Chem. 2011;4:1–22. doi: 10.1146/annurev-anchem-061010-114018. PubMed DOI

Sleno L. Volmer D. A. J. Mass Spectrom. 2004;39:1091–1112. doi: 10.1002/jms.703. PubMed DOI

Wesdemiotis C. Solak N. Polce M. J. Dabney D. E. Chaicharoen K. Katzenmeyer B. C. Mass Spectrom. Rev. 2011;30:523–559. doi: 10.1002/mas.20282. PubMed DOI

Kind T. Tsugawa H. Cajka T. Ma Y. Lai Z. Mehta S. S. Wohlgemuth G. Barupal D. K. Showalter M. R. Arita M. Fiehn O. Mass Spectrom. Rev. 2018;37:513–532. doi: 10.1002/mas.21535. PubMed DOI PMC

Johnson A. R. Carlson E. E. Anal. Chem. 2015;87:10668–10678. doi: 10.1021/acs.analchem.5b01543. PubMed DOI

Armentrout P. B. Int. J. Mass Spectrom. 2000;200:219–241. doi: 10.1016/S1387-3806(00)00310-9. DOI

Armentrout P. B. J. Am. Soc. Mass Spectrom. 2002;13:419–434. doi: 10.1016/S1044-0305(02)00347-1. PubMed DOI

Elkind J. L. Armentrout P. B. J. Phys. Chem. 1985;89:5626–5636. doi: 10.1021/j100272a012. DOI

Armentrout P. B. Annu. Rev. Phys. Chem. 2001;52:423–461. doi: 10.1146/annurev.physchem.52.1.423. PubMed DOI

Johnson G. E. Laskin J. Analyst. 2016;141:3573–3589. doi: 10.1039/C6AN00263C. PubMed DOI

Chakraborty P. Pradeep T. NPG Asia Mater. 2019;11:48. doi: 10.1038/s41427-019-0149-3. DOI

Ervin K. M. Armentrout P. B. J. Phys. Chem. 1985;83:166–189. doi: 10.1063/1.449799. DOI

Haler J. R. N. Massonnet P. Far J. de la Rosa V. R. Lecomte P. Hoogenboom R. Jérôme C. De Pauw E. J. Am. Soc. Mass Spectrom. 2019;30:563–572. doi: 10.1007/s13361-018-2115-7. PubMed DOI

Benesch J. L. P. J. Am. Soc. Mass Spectrom. 2009;20:341–348. doi: 10.1016/j.jasms.2008.11.014. PubMed DOI

More M. B. Ray D. Armentrout P. B. J. Am. Chem. Soc. 1999;121:417–423. doi: 10.1021/ja9823159. DOI

Rodgers M. T. Ervin K. M. Armentrout P. B. J. Phys. Chem. 1997;106:4499–4508. doi: 10.1063/1.473494. DOI

Armentrout P. B. Ervin K. M. Rodgers M. T. J. Phys. Chem. A. 2008;112:10071–10085. doi: 10.1021/jp805343h. PubMed DOI

Truhlar D. G. Garrett B. C. Klippenstein S. J. J. Phys. Chem. 1996;100:12771–12800. doi: 10.1021/jp953748q. DOI

El-Khairy L. Ueland P. M. Refsum H. Graham I. M. Vollset S. E. Circulation. 2001;103:2544–2549. doi: 10.1161/01.CIR.103.21.2544. PubMed DOI

Waziri R. Wilson R. Sherman A. D. Br. J. Psychiatry. 1983;143:69–73. doi: 10.1192/bjp.143.1.69. PubMed DOI

Parodi O. De Chiara B. Baldassarre D. Parolini M. Caruso R. Pustina L. Parodi G. Campolo J. Sedda V. Baudo F. Sirtori C. Clin. Biochem. 2007;40:188–193. doi: 10.1016/j.clinbiochem.2006.08.017. PubMed DOI

Paulsen C. E. Carroll K. S. Chem. Rev. 2013;113:4633–4679. doi: 10.1021/cr300163e. PubMed DOI PMC

Mohorko N. Petelin A. Jurdana M. Biolo G. Jenko-Pražnikar Z. BioMed Res. Int. 2015;2015:418681. PubMed PMC

Lin J. Lee I.-M. Song Y. Cook N. R. Selhub J. Manson J. E. Buring J. E. Zhang S. M. Cancer Res. 2010;70:2397–2405. doi: 10.1158/0008-5472.CAN-09-3648. PubMed DOI PMC

Rehman T. Shabbir M. A. Inam-Ur-Raheem M. Manzoor M. F. Ahmad N. Liu Z.-W. Ahmad M. H. Siddeeg A. Abid M. Aadil R. M. Food Sci. Nutr. 2020;8:4696–4707. doi: 10.1002/fsn3.1818. PubMed DOI PMC

Serpa J. Front. Oncol. 2020;10:947. doi: 10.3389/fonc.2020.00947. PubMed DOI PMC

Daher B. Vučetić M. Pouysségur J. Front. Oncol. 2020;10:723. doi: 10.3389/fonc.2020.00723. PubMed DOI PMC

Bonifácio V. D. B. Pereira S. A. Serpa J. Vicente J. B. Br. J. Cancer. 2021;124:862–879. doi: 10.1038/s41416-020-01156-1. PubMed DOI PMC

Wu G. Fang Y.-Z. Yang S. Lupton J. R. Turner N. D. J. Nutr. 2004;134:489–492. doi: 10.1093/jn/134.3.489. PubMed DOI

Villarama C. D. Maibach H. I. Int. J. Cosmet. Sci. 2005;27:147–153. doi: 10.1111/j.1467-2494.2005.00235.x. PubMed DOI

Winstead J. A. Radiat. Res. 1967;30:832–840. doi: 10.2307/3572148. PubMed DOI

Sanner T. Pihl A. Scand. J. Clin. Lab. Invest. 1968;21:53–63. doi: 10.1080/00365516809168202. PubMed DOI

Xu G. Chance M. R. Anal. Chem. 2005;77:2437–2449. doi: 10.1021/ac0484629. PubMed DOI

Markakis P. Tappel A. L. J. Am. Chem. Soc. 1960;82:1613–1617. doi: 10.1021/ja01492a025. DOI

Göbbels L. Poehlein A. Dumnitch A. Egelkamp R. Kröger C. Haerdter J. Hackl T. Feld A. Weller H. Daniel R. Streit W. R. Schoelmerich M. C. Sci. Rep. 2021;11:2139. doi: 10.1038/s41598-021-81103-z. PubMed DOI PMC

Ataman E. Isvoranu C. Andersen J. N. Schnadt J. Schulte K. J. Phys. Chem. Lett. 2011;2:1677–1681. doi: 10.1021/jz2006918. DOI

Bachrach S. M. Nguyen T. T. Demoin D. W. J. Phys. Chem. A. 2009;113:6172–6181. doi: 10.1021/jp901491p. PubMed DOI

Canle L M. Ramos D. R. Santaballa J. Chem. Phys. Lett. 2006;417:28–33. doi: 10.1016/j.cplett.2005.09.086. DOI

Pathak A. K. Chem. Phys. Lett. 2014;610–611:345–350. doi: 10.1016/j.cplett.2014.07.058. DOI

Sarangi R. Frank P. Benfatto M. Morante S. Minicozzi V. Hedman B. Hodgson K. O. J. Chem. Phys. 2012;137:205103. doi: 10.1063/1.4767350. PubMed DOI PMC

Su C.-C. Yu Y. Chang P.-C. Chen Y.-W. Chen I.-Y. Lee Y.-Y. Wang C. C. J. Phys. Chem. Lett. 2015;6:817–823. doi: 10.1021/acs.jpclett.5b00002. PubMed DOI

Risberg E. D. Jalilehvand F. Leung B. O. Pettersson L. G. M. Sandström M. Dalton Trans. 2009:3542–3558. doi: 10.1039/B819257J. PubMed DOI

de Oliveira C. X. Mocellin A. Menezes de Souza Lima F. de Jesus Chaves Neto A. M. Lima Azevedo D. ChemistrySelect. 2020;5:439–447. doi: 10.1002/slct.201903453. DOI

Laksman J. Kooser K. Levola H. Itälä E. Ha D. T. Rachlew E. Kukk E. J. Phys. Chem. B. 2014;118:11688–11695. doi: 10.1021/jp508161s. PubMed DOI

Abdoul-Carime H. Gohlke S. Illenberger E. Phys. Chem. Chem. Phys. 2004;6:161–164. doi: 10.1039/B311675A. DOI

Muftakhov M. V. Shchukin P. V. Russ. J. Phys. Chem. A. 2020;94:102–109. doi: 10.1134/S0036024420010240. DOI

Sato S. He Z. Kaneda M. Imai M. Tsuchida H. Itoh A. Nucl. Instrum. Methods Phys. Res., Sect. B. 2007;256:506–509. doi: 10.1016/j.nimb.2006.12.050. DOI

Aflatooni K. Hitt B. Gallup G. A. Burrow P. D. J. Chem. Phys. 2001;115:6489–6494. doi: 10.1063/1.1404147. DOI

Abdoul-Carime H. Sanche L. J. Phys. Chem. B. 2004;108:457–464. doi: 10.1021/jp030413x. DOI

Choi S.-S. Song M. J. Kim O.-B. Kim Y. Rapid Commun. Mass Spectrom. 2013;27:143–151. doi: 10.1002/rcm.6411. PubMed DOI

Zhang P. Chan W. Ang I. L. Wei R. Lam M. M. T. Lei K. M. K. Poon T. C. W. Sci. Rep. 2019;9:6453. doi: 10.1038/s41598-019-42777-8. PubMed DOI PMC

Piraud M. Vianey-Saban C. Petritis K. Elfakir C. Steghens J.-P. Morla A. Bouchu D. Rapid Commun. Mass Spectrom. 2003;17:1297–1311. doi: 10.1002/rcm.1054. PubMed DOI

Ryzhov V. Lam A. K. Y. OHair R. A. J. J. Am. Soc. Mass Spectrom. 2009;20:985–995. doi: 10.1016/j.jasms.2008.12.026. PubMed DOI

Rogalewicz F. Hoppilliard Y. Ohanessian G. Int. J. Mass Spectrom. 2000;195–196:565–590. doi: 10.1016/S1387-3806(99)00225-0. DOI

Armentrout P. B. Stennett E. M. S. J. Am. Soc. Mass Spectrom. 2014;25:512–523. doi: 10.1007/s13361-013-0817-4. PubMed DOI

Tiefenthaler L. Ameixa J. Martini P. Albertini S. Ballauf L. Zankl M. Goulart M. Laimer F. von Haeften K. Zappa F. Scheier P. Rev. Sci. Instrum. 2020;91:033315. doi: 10.1063/1.5133112. PubMed DOI

Díaz-Tendero S. Hervieux P.-A. Alcamí M. Martín F. Phys. Rev. A: At., Mol., Opt. Phys. 2005;71:033202. doi: 10.1103/PhysRevA.71.033202. DOI

Aguirre N. F. Díaz-Tendero S. Hervieux P.-A. Alcamí M. Martín F. J. Chem. Theory Comput. 2017;13:992–1009. doi: 10.1021/acs.jctc.6b00984. PubMed DOI

Gomez L. F. Loginov E. Sliter R. Vilesov A. F. J. Phys. Chem. 2011;135:154201. doi: 10.1063/1.3650235. PubMed DOI

Laimer F. Kranabetter L. Tiefenthaler L. Albertini S. Zappa F. Ellis A. M. Gatchell M. Scheier P. Phys. Rev. Lett. 2019;123:165301. doi: 10.1103/PhysRevLett.123.165301. PubMed DOI

Laimer F. Zappa F. Scheier P. J. Phys. Chem. A. 2021;125:7662–7669. doi: 10.1021/acs.jpca.1c05619. PubMed DOI PMC

Mauracher A. Echt O. Ellis A. Yang S. Bohme D. Postler J. Kaiser A. Denifl S. Scheier P. Phys. Rep. 2018;751:1–90. doi: 10.1016/j.physrep.2018.05.001. DOI

Lalanne M. R. Achazi G. Reichwald S. Lindinger A. Eur. Phys. J. D. 2015;69:280. doi: 10.1140/epjd/e2015-60245-x. DOI

Tiefenthaler L. Ončák M. Kollotzek S. Kočišek J. Scheier P. J. Phys. Chem. A. 2020;124:8439–8445. doi: 10.1021/acs.jpca.0c07208. PubMed DOI PMC

Tiefenthaler L. Kočišek J. Scheier P. Eur. Phys. J. D. 2020;74:85. doi: 10.1140/epjd/e2020-10014-y. DOI

Klassen J. S. Kebarle P. J. Am. Chem. Soc. 1997;119:6552–6563. doi: 10.1021/ja962813m. DOI

Erdmann E. abuda M. Aguirre N. F. Díaz-Tendero S. Alcamí M. J. Phys. Chem. A. 2018;122:4153–4166. doi: 10.1021/acs.jpca.8b00881. PubMed DOI

Erdmann E. Aguirre N. F. Indrajith S. Chiarinelli J. Domaracka A. Rousseau P. Huber B. A. Bolognesi P. Richter R. Avaldi L. Díaz-Tendero S. Alcamí M. Abuda M. Phys. Chem. Chem. Phys. 2021;23:1859–1867. doi: 10.1039/D0CP04890A. PubMed DOI

Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.

Clark T. Chandrasekhar J. Spitznagel G. W. Schleyer P. V. R. J. Comput. Chem. 1983;4:294–301. doi: 10.1002/jcc.540040303. DOI

Hariharan P. C. Pople J. A. Theor. Chim. Acta. 1973;28:213–222. doi: 10.1007/BF00533485. DOI

Hehre W. J. Ditchfield R. Pople J. A. J. Chem. Phys. 1972;56:2257–2261. doi: 10.1063/1.1677527. DOI

Mardirossian N. Head-Gordon M. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI

Bachrach S. M. Nguyen T. T. Demoin D. W. J. Phys. Chem. A. 2009;113:6172–6181. doi: 10.1021/jp901491p. PubMed DOI

Schlegel H. B. Millam J. M. Iyengar S. S. Voth G. A. Daniels A. D. Scuseria G. E. Frisch M. J. J. Chem. Phys. 2001;114:9758–9763. doi: 10.1063/1.1372182. DOI

Iyengar S. S. Schlegel H. B. Millam J. M. Voth G. A. Scuseria G. E. Frisch M. J. J. Chem. Phys. 2001;115:10291–10302. doi: 10.1063/1.1416876. DOI

Schlegel H. B. Iyengar S. S. Li X. Millam J. M. Voth G. A. Scuseria G. E. Frisch M. J. J. Chem. Phys. 2002;117:8694–8704. doi: 10.1063/1.1514582. DOI

Aguirre N. F., Díaz-Tendero S., Hervieux P.-A., Alcamí M. and Martín F., M3C (Microcanonical Metropolis Monte–Carlo), 2020, https://github.com/nfaguirrec/M3C

Maheshwary S. Patel N. Sathyamurthy N. Kulkarni A. D. Gadre S. R. J. Phys. Chem. A. 2001;105:10525–10537. doi: 10.1021/jp013141b. DOI

Hodges M. P. Wales D. J. Chem. Phys. Lett. 2000;324:279–288. doi: 10.1016/S0009-2614(00)00584-4. DOI

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 09 Revision E.01, Gaussian Inc., Wallingford CT, 2016

Armentrout P. B. Mass Spectrom. Rev. 2021 doi: 10.1002/mas.21723. PubMed DOI

Reutt J. E. Wang L. S. Lee Y. T. Shirley D. A. J. Chem. Phys. 1986;85:6928–6939. doi: 10.1063/1.451379. DOI

Ng C. Y. Trevor D. J. Tiedemann P. W. Ceyer S. T. Kronebusch P. L. Mahan B. H. Lee Y. T. J. Chem. Phys. 1977;67:4235–4237. doi: 10.1063/1.435404. DOI

Verma P. Ghosh D. Dutta A. K. J. Phys. Chem. A. 2021;125:4683–4694. doi: 10.1021/acs.jpca.0c10199. PubMed DOI

Braud I. Zamith S. Cuny J. Zheng L. LHermite J.-M. J. Chem. Phys. 2019;150:014303. doi: 10.1063/1.5044481. PubMed DOI

Mattioli G. Avaldi L. Bolognesi P. Bozek J. D. Castrovilli M. C. Chiarinelli J. Domaracka A. Indrajith S. Maclot S. Milosavljević A. R. Nicolafrancesco C. Rousseau P. Phys. Chem. Chem. Phys. 2021;23:15049–15058. doi: 10.1039/D1CP02031E. PubMed DOI

Morgan S. Castleman A. W. J. Phys. Chem. 1989;93:4544–4550. doi: 10.1021/j100348a031. DOI

Morgan S. Keesee R. G. Castleman A. W. J. Am. Chem. Soc. 1989;111:3841–3845. doi: 10.1021/ja00193a014. DOI

Ganguly S. Barreiro-Lage D. Walsh N. Oostenrijk B. Sorensen S. L. DÃaz-Tendero S. Gisselbrecht M. Commun. Chem. 2022;5:16. doi: 10.1038/s42004-022-00629-z. PubMed DOI PMC

Sedmidubská B. Luxford T. F. M. Kočišek J. Phys. Chem. Chem. Phys. 2021;23:21501–21511. doi: 10.1039/D1CP02686K. PubMed DOI

Abdoul-Carime H. Berthias F. Feketeová L. Marciante M. Calvo F. Forquet V. Chermette H. Farizon B. Farizon M. Märk T. D. Angew. Chem., Int. Ed. 2015;54:14685–14689. doi: 10.1002/anie.201505890. PubMed DOI PMC

Zheng L. Cuny J. Zamith S. L’Hermite J.-M. Rapacioli M. Phys. Chem. Chem. Phys. 2021;23:27404–27416. doi: 10.1039/D1CP03228C. PubMed DOI

Gatchell M. Ameixa J. Ji M. Stockett M. H. Simonsson A. Denifl S. Cederquist H. Schmidt H. T. Zettergren H. Nat. Commun. 2021;12:6646. doi: 10.1038/s41467-021-26899-0. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...