Dynamics of the vitamin D C3-epimer levels in preterm infants
Jazyk angličtina Země Německo Médium electronic-print
Typ dokumentu časopisecké články
PubMed
36660856
DOI
10.1515/cclm-2022-1128
PII: cclm-2022-1128
Knihovny.cz E-zdroje
- Klíčová slova
- C3-epi-25(OH)D, C3-epimer, newborn, preterm infants, vitamin D,
- MeSH
- kalcifediol MeSH
- kojenec MeSH
- lidé MeSH
- nedostatek vitaminu D * MeSH
- novorozenec nedonošený MeSH
- novorozenec s velmi nízkou porodní hmotností MeSH
- novorozenec MeSH
- předčasný porod * MeSH
- vitamin D MeSH
- vitaminy MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kalcifediol MeSH
- vitamin D MeSH
- vitaminy MeSH
OBJECTIVES: The primary objective was to determine levels of C3-epi-25(OH)D in very low birth weight infants. The secondary objective was to evaluate the possible influence of preterm birth, intrauterine growth restriction (IUGR), and season of birth on the production of C3-epimers. METHODS: A total of 127 infants with birth weight less than 1,500 g met the inclusion criteria of the study. We examined 25-hydroxyvitamin-D [25(OH)D] levels and C3-epi-25(OH)D in maternal serum before labor, and in cord blood and infants' serum on days 14 and 28, and at discharge. RESULTS: The mean levels (±SD) of C3-epi-25(OH)D of the cord, on day 14, on day 28, and at discharge were 2.2 (2.9), 7.7 (5.5), 11.7 (7.6) and 14.9 (11.7) nmol/L respectively. The proportion of total 25(OH)D as the C3-epimer was 6.9% (cord), 16.3% (day 14), 22.4% (day 28) and 23.3% (discharge). A statistically significant correlation between 25(OH)D and C3-epi-25(OH)D can be demonstrated from birth. The severity of immaturity and IUGR did not affect the production of C3-epimers. In summer/autumn vs. winter/spring, the mean (SD) percentage of total 25(OH)D as the C3-epimer significantly differs only in maternal serum samples and umbilical cord samples (p value <0.001). CONCLUSIONS: The production of C3-epi-25(OH)D is functional even in the most immature newborns, has fetal origins, and is largely dependent on circulating 25(OH)D. At the end of the first month of life, C3-epimers make up more than 20% of 25(OH)D.
Zobrazit více v PubMed
Saraf, R, Morton, SM, Camargo, CAJr, Grant, CC. Global summary of maternal and newborn vitamin D status – a systematic review. Matern Child Nutr 2016;12:647–68. https://doi.org/10.1111/mcn.12210 . DOI
Matejek, T, Navratilova, M, Zaloudkova, L, Malakova, J, Maly, J, Skalova, S, et al.. Parathyroid hormone – reference values and association with other bone metabolism markers in very low birth weight infants – pilot study. J Matern Fetal Neonatal Med 2019;32:2860–7. https://doi.org/10.1080/14767058.2018.14508582 . DOI
Matejek, T, Navratilova, M, Zaloudkova, L, Malakova, J, Maly, J, Skalova, S, et al.. Vitamin D status of very low birth weight infants at birth and the effects of generally recommended supplementation on their vitamin D levels at discharge. J Matern Fetal Neonatal Med 2020;33:3784–90. https://doi.org/10.1080/14767058.2019.1586873 . DOI
Andersen, LB, Jørgensen, JS, Jensen, TK, Dalgård, C, Barington, T, Nielsen, J, et al.. Vitamin D insufficiency is associated with increased risk of first-trimester miscarriage in the odense child cohort. Am J Clin Nutr 2015;102:633–8. https://doi.org/10.3945/ajcn.114.103655 . DOI
Evans, KN, Bulmer, JN, Kilby, MD, Hewison, M. Vitamin D and placental-decidual function. J Soc Gynecol Invest 2004;11:263–71. https://doi.org/10.1016/j.jsgi.2004.02.002 . DOI
Uriu-Adams, JY, Obican, SG, Keen, CL. Vitamin D and maternal and child health: overview and implications for dietary requirements. Birth Defects Res Part C Embryo Today 2013;99:24–44. https://doi.org/10.1002/bdrc.21031 . DOI
Clancy, N, Onwuneme, C, Carroll, A, McCarthy, R, McKenna, MJ, Murphy, N, et al.. Vitamin D and neonatal immune function. J Matern Fetal Neonatal Med 2013;26:639–46. https://doi.org/10.3109/14767058.2012.746304 . DOI
Matejek, T, Zemankova, J, Malakova, J, Cermakova, E, Skalova, S, Palicka, V. Severe vitamin D deficiency in preterm infants: possibly no association with clinical outcomes? J Matern Fetal Neonatal Med 2022;35:1562–70.
Whitehouse, AJ, Holt, BJ, Serralha, M, Holt, PG, Kusel, MM, Hart, PH. Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development. Pediatrics 2012;129:485–93. https://doi.org/10.1542/peds.2011-2644 . DOI
Kozgar, SAM, Chay, P, Munns, CF. Screening of vitamin D and calcium concentrations in neonates of mothers at high risk of vitamin D deficiency. BMC Pediatr 2020;20:332. https://doi.org/10.1186/s12887-020-02204-8 . DOI
Munns, CF, Shaw, N, Kiely, M, Specker, BL, Thacher, TD, Ozono, K, et al.. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab 2016;101:394–415. https://doi.org/10.1210/jc.2015-2175 . DOI
Bailey, D, Veljkovic, K, Yazdanpanah, M, Adeli, K. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin Biochem 2013;46:190–6. https://doi.org/10.1016/j.clinbiochem.2012.10.037 . DOI
Reddy, GS, Muralidharan, KR, Okamura, WH, Tserng, KY, McLane, JA. Metabolism of 1alpha,25-dihydroxyvitamin D(3) and its C-3 epimer 1alpha,25-dihydroxy-3-epi-vitamin D(3) in neonatal human keratinocytes. Steroids 2001;66:441–50. https://doi.org/10.1016/s0039-128x(00)00228-2 . DOI
Al-Zohily, B, Al-Menhali, A, Gariballa, S, Haq, A, Shah, I. Epimers of vitamin D: a review. Int J Mol Sci 2020;21:E470. https://doi.org/10.3390/ijms21020470 . DOI
Tuckey, RC, Cheng, CYS, Slominski, AT. The serum vitamin D metabolome: what we know and what is still to discover. J Steroid Biochem Mol Biol 2019;186:4–21. https://doi.org/10.1016/j.jsbmb.2018.09.003 . DOI
Yazdanpanah, M, Bailey, D, Walsh, W, Wan, B, Adeli, K. Analytical measurement of serum 25-OH-vitamin D-, 25-OH-vitamin D- and their C3-epimers by LC-MS/MS in infant and pediatric specimens. Clin Biochem 2013;46:1264–71. https://doi.org/10.1016/j.clinbiochem.2012.11.030 . DOI
Kiely, M, O’Donovan, SM, Kenny, LC, Hourihane, JO, Irvine, AD, Murray, DM. Vitamin D metabolite concentrations in umbilical cord blood serum and associations with clinical characteristics in a large prospective mother-infant cohort in Ireland. J Steroid Biochem Mol Biol 2017;167:162–8. https://doi.org/10.1016/j.jsbmb.2016.12.006 . DOI
van den Ouweland, JM, Beijers, AM, Demacker, PN, van Daal, H. Measurement of 25-OH-vitamin D in human serum using liquid chromatography tandem-mass spectrometry with comparison to radioimmunoassay and automated immunoassay. J Chromatogr B Anal Technol Biomed Life Sci 2010;878:1163–8. https://doi.org/10.1016/j.jchromb.2010.03.035 . DOI
Vierucci, F, Fusani, L, Saba, A, Minucciani, T, Belluomini, MP, Domenici, R, et al.. Gestational vitamin D(3) supplementation and sun exposure significantly influence cord blood vitamin D status and 3-epi-25-hydroxyvitamin D(3) levels in term newborns. Clin Chim Acta 2022;524:59–68. https://doi.org/10.1016/j.cca.2021.11.022 . DOI
Gallo, S, Comeau, K, Agellon, S, Vanstone, C, Sharma, A, Jones, G, et al.. Methodological issues in assessing plasma 25-hydroxyvitamin D concentration in newborn infants. Bone 2014;61:186–90. https://doi.org/10.1016/j.bone.2014.01.012 . DOI
Singh, RJ, Taylor, RL, Reddy, GS, Grebe, SK. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab 2006;91:3055–61. https://doi.org/10.1210/jc.2006-0710 . DOI
Volmer, DA, Mendes, LR, Stokes, CS. Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom Rev 2015;34:2–23. https://doi.org/10.1002/mas.21408 . DOI
Jenkinson, C, Desai, R, Slominski, AT, Tuckey, RC, Hewison, M, Handelsman, DJ. Simultaneous measurement of 13 circulating vitamin D3 and D2 mono and dihydroxy metabolites using liquid chromatography mass0020spectrometry. Clin Chem Lab Med 2021;59:1642–52. https://doi.org/10.1515/cclm-2021-0441 . DOI
Bogusz, MJ, Al Enazi, E, Tahtamoni, M, Jawaad, JA, Al Tufail, M. Determination of serum vitamins 25-OH-D2 and 25-OH-D3 with liquid chromatography-tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray source and core-shell or sub-2 μm particle columns: a comparative study. Clin Biochem 2011;44:1329–37. https://doi.org/10.1016/j.clinbiochem.2011.08.1134 . DOI
Craig, A, David, B, Anders, F. Fast and accurate analysis of vitamin D metabolites using ascentis® express F5 HPLC columns. Reporter 2011;47:3–4.
Hay, W, Thureen, P. Neonatal nutrition and metabolism . Cambridge UK: Cambridge University Press; 2006.
Agostoni, C, Buonocore, G, Carnielli, VP, De Curtis, M, Darmaun, D, Decsi, T, et al.. Enteral nutrient supply for preterm infants: commentary from the European society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 2010;50:85–91. https://doi.org/10.1097/mpg.0b013e3181adaee0 . DOI
Abrams, SA, Committee on Nutrition . Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics 2013;131:e1676–83. https://doi.org/10.1542/peds.2013-0420 . DOI
Braegger, C, Campoy, C, Colomb, V, Decsi, T, Domellof, M, Fewtrell, M, et al.. Vitamin D in the healthy European paediatric population. J Pediatr Gastroenterol Nutr 2013;56:692–701. https://doi.org/10.1097/mpg.0b013e31828f3c05 . DOI
Misra, M, Pacaud, D, Petryk, A, Collett-Solberg, PF, Kappy, M, Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society . Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 2008;122:398–417. https://doi.org/10.1542/peds.2007-1894 . DOI
Saggese, G, Vierucci, F, Prodam, F, Cardinale, F, Cetin, I, Chiappini, E, et al.. Vitamin D in pediatric age: consensus of the Italian pediatric society and the Italian society of preventive and social pediatrics, jointly with the Italian federation of pediatricians. Ital J Pediatr 2018;44:51. https://doi.org/10.1186/s13052-018-0488-7 . DOI
Grossman, Z, Hadjipanayis, A, Stiris, T, Del Torso, S, Mercier, JC, Valiulis, A, et al.. Vitamin D in European children-statement from the European academy of paediatrics (EAP). Eur J Pediatr 2017;176:829–31. https://doi.org/10.1007/s00431-017-2903-2 . DOI
Figueras-Aloy, J, Alvarez-Dominguez, E, Perez-Fernandez, JM, Moretones-Sunol, G, Vidal-Sicart, S, Botet-Mussons, F. Metabolic bone disease and bone mineral density in very preterm infants. J Pediatr 2014;164:499–504. https://doi.org/10.1016/j.jpeds.2013.10.089 . DOI
Bailey, D, Perumal, N, Yazdanpanah, M, Al Mahmud, A, Baqui, AH, Adeli, K, et al.. Maternal-fetal-infant dynamics of the C3-epimer of 25-hydroxyvitamin D. Clin Biochem 2014;47:816–22. https://doi.org/10.1016/j.clinbiochem.2014.01.015 . DOI
Hanson, C, Anderson-Berry, A, Lyden, E, Kaufmann, M, Wu, A, Elliott, E, et al.. Dynamics of vitamin D metabolism in maternal-fetal dyads. J Pediatr Gastroenterol Nutr 2016;62:486–90. https://doi.org/10.1097/mpg.0000000000001001 . DOI
Hanson, C, Jones, G, Lyden, E, Kaufmann, M, Armas, L, Anderson-Berry, A. Vitamin D metabolism in the premature newborn: a randomized trial. Clin Nutr 2016;35:835–41. https://doi.org/10.1016/j.clnu.2015.07.023 . DOI
Fatani, T, Binjab, A, Weiler, H, Sharma, A, Rodd, C. Persistent elevation of fibroblast growth factor 23 concentrations in healthy appropriate-for-gestational-age preterm infants. J Pediatr Endocrinol Metab 2015;28:825–32. https://doi.org/10.1515/jpem-2014-0186 . DOI
Ooms, N, van Daal, H, Beijers, AM, Gerrits, GP, Semmekrot, BA, van den Ouweland, JM. Time-course analysis of 3-epi-25-hydroxyvitamin D3 shows markedly elevated levels in early life, particularly from vitamin D supplementation in preterm infants. Pediatr Res 2016;79:647–53. https://doi.org/10.1038/pr.2015.251 . DOI
Mydtskov, ND, Lykkedegn, S, Fruekilde, PBN, Nielsen, J, Barington, T, Christesen, HT. S-25-hydroxyvitamin D and C3-epimers in pregnancy and infancy: an odense child cohort study. Clin Biochem 2017;50:988–96. https://doi.org/10.1016/j.clinbiochem.2017.07.001 . DOI
Kmieć, P, Minkiewicz, I, Rola, R, Sworczak, K, Żmijewski, MA, Kowalski, K. Vitamin D status including 3-epi-25(OH)D3 among adult patients with thyroid disorders during summer months. Endokrynol Pol 2018;69:653–60. https://doi.org/10.5603/EP.a2018.0065 . DOI
Stokes, CS, Volmer, DA. Assessment of 3-epi-25-hydroxyvitamin D levels during cholecalciferol supplementation in adults with chronic liver diseases. Appl Physiol Nutr Metabol 2016;41:1311–7. https://doi.org/10.1139/apnm-2016-0196 . DOI
Djekic-Ivankovic, M, Lavery, P, Agellon, S, Weiler, HA. The C-3α epimer of 25-hydroxycholecalciferol from endogenous and exogenous sources supports normal growth and bone mineral density in weanling rats. J Nutr 2017;147:141–51. https://doi.org/10.3945/jn.116.231753 . DOI
Giuliani, S, Barbieri, V, Di Pierro, AM, Rossi, F, Widmann, T, Lucchiari, M, et al.. LC-MS/MS based 25(OH)D status in a large Southern European outpatient cohort: gender- and age-specific differences. Eur J Nutr 2019;58:2511–20. https://doi.org/10.1007/s00394-018-1803-1 . DOI
Ghaly, S, Bliuc, D, Center, JR, Clarke, MW, Jones, AP, Trend, S, et al.. Vitamin D C3-epimer levels are proportionally higher with oral vitamin D supplementation compared to ultraviolet irradiation of skin in mice but not humans. J Steroid Biochem Mol Biol 2019;186:110–6. https://doi.org/10.1016/j.jsbmb.2018.10.002 . DOI
Vitamin D metabolome in preterm infants: insights into postnatal metabolism