Lung macrophages utilize unique cathepsin K-dependent phagosomal machinery to degrade intracellular collagen
Language English Country United States Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36697252
PubMed Central
PMC9877437
DOI
10.26508/lsa.202201535
PII: 6/4/e202201535
Knihovny.cz E-resources
- MeSH
- Phagosomes * metabolism MeSH
- Cathepsin K * metabolism MeSH
- Collagen metabolism MeSH
- Humans MeSH
- Macrophages * metabolism MeSH
- Lung MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CTSK protein, human MeSH Browser
- Cathepsin K * MeSH
- Collagen MeSH
Resident tissue macrophages are organ-specialized phagocytes responsible for the maintenance and protection of tissue homeostasis. It is well established that tissue diversity is reflected by the heterogeneity of resident tissue macrophage origin and phenotype. However, much less is known about tissue-specific phagocytic and proteolytic macrophage functions. Here, using a quantitative proteomics approach, we identify cathepsins as key determinants of phagosome maturation in primary peritoneum-, lung-, and brain-resident macrophages. The data further uncover cathepsin K (CtsK) as a molecular marker for lung phagosomes required for intracellular protein and collagen degradation. Pharmacological blockade of CtsK activity diminished phagosomal proteolysis and collagenolysis in lung-resident macrophages. Furthermore, profibrotic TGF-β negatively regulated CtsK-mediated phagosomal collagen degradation independently from classical endocytic-proteolytic pathways. In humans, phagosomal CtsK activity was reduced in COPD lung macrophages and non-COPD lung macrophages exposed to cigarette smoke extract. Taken together, this study provides a comprehensive map of how peritoneal, lung, and brain tissue environment shapes phagosomal composition, revealing CtsK as a key molecular determinant of lung phagosomes contributing to phagocytic collagen clearance in lungs.
Biomedical Research Centre University Hospital Hradec Kralove Hradec Kralove Czech Republic
Proteomics Core Facility The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
See more in PubMed
Abboud RT, Vimalanathan S (2008) Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 12: 361–367. PubMed
A-Gonzalez N, Quintana JA, Garcia-Silva S, Mazariegos M, Gonzalez de la Aleja A, Nicolas-Avila JA, Walter W, Adrover JM, Crainiciuc G, Kuchroo VK, et al. (2017) Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med 214: 1281–1296. 10.1084/jem.20161375 PubMed DOI PMC
Andelid K, Öst K, Andersson A, Mohamed E, Jevnikar Z, Vanfleteren LEGW, Göransson M (2021) Lung macrophages drive mucus production and steroid-resistant inflammation in chronic bronchitis. Respir Res 22: 172. 10.1186/s12931-021-01762-4 PubMed DOI PMC
Arandjelovic S, Ravichandran KS (2015) Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 16: 907–917. 10.1038/ni.3253 PubMed DOI PMC
Barnes PJ, Burney PGJ, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, Wouters EFM (2015) Chronic obstructive pulmonary disease. Nat Rev Dis Primers 1: 15076. 10.1038/nrdp.2015.76 PubMed DOI
Bednarski E, Lynch G (1998) Selective suppression of cathepsin L results from elevations in lysosomal pH and is followed by proteolysis of tau protein. Neuroreport 9: 2089–2094. 10.1097/00001756-199806220-00033 PubMed DOI
Bilkei-Gorzo O, Heunis T, Marin-Rubio JL, Cianfanelli FR, Raymond BBA, Inns J, Fabrikova D, Peltier J, Oakley F, Schmid R, et al. (2022) The E3 ubiquitin ligase RNF115 regulates phagosome maturation and host response to bacterial infection. EMBO J 41: e108970. 10.15252/embj.2021108970 PubMed DOI PMC
Bird PI, Trapani JA, Villadangos JA (2009) Endolysosomal proteases and their inhibitors in immunity. Nat Rev Immunol 9: 871–882. 10.1038/nri2671 PubMed DOI
Bleriot C, Chakarov S, Ginhoux F (2020) Determinants of resident tissue macrophage identity and function. Immunity 52: 957–970. 10.1016/j.immuni.2020.05.014 PubMed DOI
Buhling F, Reisenauer A, Gerber A, Kruger S, Weber E, Bromme D, Roessner A, Ansorge S, Welte T, Rocken C (2001) Cathepsin K--a marker of macrophage differentiation? J Pathol 195: 375–382. 10.1002/path.959 PubMed DOI
Buhling F, Waldburg N, Kruger S, Rocken C, Wiesner O, Weber E, Welte T (2002) Expression of cathepsins B, H, K, L, and S during human fetal lung development. Dev Dyn 225: 14–21. 10.1002/dvdy.10134 PubMed DOI
Buhling F, Rocken C, Brasch F, Hartig R, Yasuda Y, Saftig P, Bromme D, Welte T (2004) Pivotal role of cathepsin K in lung fibrosis. Am J Pathol 164: 2203–2216. 10.1016/s0002-9440(10)63777-7 PubMed DOI PMC
Buhling F, Kouadio M, Chwieralski CE, Kern U, Hohlfeld JM, Klemm N, Friedrichs N, Roth W, Deussing JM, Peters C, et al. (2011) Gene targeting of the cysteine peptidase cathepsin H impairs lung surfactant in mice. PLoS One 6: e26247. 10.1371/journal.pone.0026247 PubMed DOI PMC
Cassado ADA, D’Império Lima MR, Bortoluci KR (2015) Revisiting mouse peritoneal macrophages: Heterogeneity, development, and function. Front Immunol 6: 225. 10.3389/fimmu.2015.00225 PubMed DOI PMC
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al. (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513: 559–563. 10.1038/nature13490 PubMed DOI PMC
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372. 10.1038/nbt.1511 PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513–2526. 10.1074/mcp.m113.031591 PubMed DOI PMC
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G (2020) Cathepsin K: The action in and beyond bone. Front Cell Dev Biol 8: 433. 10.3389/fcell.2020.00433 PubMed DOI PMC
Desjardins M, Huber LA, Parton RG, Griffiths G (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124: 677–688. 10.1083/jcb.124.5.677 PubMed DOI PMC
Draijer C, Penke LRK, Peters-Golden M (2019) Distinctive effects of GM-CSF and M-CSF on proliferation and polarization of two major pulmonary macrophage populations. J Immunol 202: 2700–2709. 10.4049/jimmunol.1801387 PubMed DOI PMC
Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33: 397–405. 10.1016/j.it.2012.03.003 PubMed DOI
Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44: 439–449. 10.1016/j.immuni.2016.02.024 PubMed DOI
Gresser O, Weber E, Hellwig A, Riese S, Regnier-Vigouroux A (2001) Immunocompetent astrocytes and microglia display major differences in the processing of the invariant chain and in the expression of active cathepsin L and cathepsin S. Eur J Immunol 31: 1813–1824. 10.1002/1521-4141(200106)31:6<1813::aid-immu1813>3.0.co;2-8 PubMed DOI
Gu YH, Kanazawa M, Hung SY, Wang X, Fukuda S, Koziol JA, Zoppo GJD (2015) Cathepsin L acutely alters microvessel integrity within the neurovascular unit during focal cerebral ischemia. J Cereb Blood Flow Metab 35: 1888–1900. 10.1038/jcbfm.2015.170 PubMed DOI PMC
Guieu JD, Hellon RF (1980) The chill sensation in fever. Pflugers Arch 384: 103–104. 10.1007/bf00589522 PubMed DOI
Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, Deswarte K, Malissen B, Hammad H, Lambrecht BN (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210: 1977–1992. 10.1084/jem.20131199 PubMed DOI PMC
Guo M, Härtlova A, Gierliński M, Prescott A, Castellvi J, Losa JH, Petersen SK, Wenzel U A, Dill BD, Emmerich CHH, et al. (2019) Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J 38: e100299. 10.15252/embj.2018100299 PubMed DOI PMC
Johnson JL, Newby AC (2009) Macrophage heterogeneity in atherosclerotic plaques. Curr Opin Lipidol 20: 370–378. 10.1097/mol.0b013e3283309848 PubMed DOI PMC
Knaapi J, Kiviranta R, Laine J, Kaapa P, Lukkarinen H (2015) Cathepsin K overexpression modifies lung development in newborn mice. Pediatr Pulmonol 50: 164–172. 10.1002/ppul.23011 PubMed DOI
Lee CW, Stankowski JN, Chew J, Cook CN, Lam YW, Almeida S, Carlomagno Y, Lau KF, Prudencio M, Gao FB, et al. (2017) The lysosomal protein cathepsin L is a progranulin protease. Mol Neurodegener 12: 55. 10.1186/s13024-017-0196-6 PubMed DOI PMC
Lemke G (2013) Biology of the TAM receptors. Cold Spring Harbor Perspect Biol 5: a009076. 10.1101/cshperspect.a009076 PubMed DOI PMC
Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18: 225–242. 10.1038/nri.2017.125 PubMed DOI
Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitzgerald P, Hengartner MO, Green DR (2011) Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A 108: 17396–17401. 10.1073/pnas.1113421108 PubMed DOI PMC
Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H, Wells AU (2017) Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3: 17074. 10.1038/nrdp.2017.74 PubMed DOI
McQueney MS, Amegadzie BY, D’Alessio K, Hanning CR, McLaughlin MM, McNulty D, CarrIjames SAC, Kurdyla J, Jones CS (1997) Autocatalytic activation of human cathepsin K. J Biol Chem 272: 13955–13960. 10.1074/jbc.272.21.13955 PubMed DOI
Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11: 723–737. 10.1038/nri3073 PubMed DOI PMC
Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140: 619–630. 10.1016/j.cell.2010.02.014 PubMed DOI
Pauwels AM, Trost M, Beyaert R, Hoffmann E (2017) Patterns, receptors, and signals: Regulation of phagosome maturation. Trends Immunol 38: 407–422. 10.1016/j.it.2017.03.006 PubMed DOI PMC
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, et al. (2019) The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res 47: D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC
Podinovskaia M, VanderVen BC, Yates RM, Glennie S, Fullerton D, Mwandumba HC, Russell DG (2013) Dynamic quantitative assays of phagosomal function. Curr Protoc Immunol 102: 14.34.1–14.34.14. 10.1002/0471142735.im1434s102 PubMed DOI PMC
Rapa I, Volante M, Cappia S, Rosas R, Scagliotti GV, Papotti M (2006) Cathepsin K is selectively expressed in the stroma of lung adenocarcinoma but not in bronchioloalveolar carcinoma. A useful marker of invasive growth. Am J Clin Pathol 125: 847–854. 10.1309/q96aydaaj3e1tnwt PubMed DOI
Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G (2007) TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131: 1124–1136. 10.1016/j.cell.2007.10.034 PubMed DOI
Srivastava M, Steinwede K, Kiviranta R, Morko J, Hoymann HG, Langer F, Buhling F, Welte T, Maus UA (2008) Overexpression of cathepsin K in mice decreases collagen deposition and lung resistance in response to bleomycin-induced pulmonary fibrosis. Respir Res 9: 54. 10.1186/1465-9921-9-54 PubMed DOI PMC
Timur ZK, Akyildiz Demir S, Seyrantepe V (2016) Lysosomal cathepsin A plays a significant role in the processing of endogenous bioactive peptides. Front Mol Biosci 3: 68. 10.3389/fmolb.2016.00068 PubMed DOI PMC
Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim Biophys Acta 1824: 68–88. 10.1016/j.bbapap.2011.10.002 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13: 731–740. 10.1038/nmeth.3901 PubMed DOI
Ueno T, Linder S, Na CL, Rice WR, Johansson J, Weaver TE (2004) Processing of pulmonary surfactant protein B by napsin and cathepsin H. J Biol Chem 279: 16178–16184. 10.1074/jbc.m312029200 PubMed DOI
van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G, Hoffmann E, Beyaert R, Saeys Y, Lambrecht BN, et al. (2016) Yolk sac macrophages, fetal liver, and Adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44: 755–768. 10.1016/j.immuni.2016.02.017 PubMed DOI
van den Brule S, Misson P, Buhling F, Lison D, Huaux F (2005) Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-β. Respir Res 6: 84. 10.1186/1465-9921-6-84 PubMed DOI PMC
Vietinghoff G, Paegelow I (2000) Degradation of bradykinin by peritoneal and alveolar macrophages of the Guinea pig. Peptides 21: 1249–1255. 10.1016/s0196-9781(00)00266-7 PubMed DOI
Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12: 317–323. 10.1038/nm1361 PubMed DOI
Xu S, Zhang H, Yang X, Qian Y, Xiao Q (2018) Inhibition of cathepsin L alleviates the microglia-mediated neuroinflammatory responses through caspase-8 and NF-κB pathways. Neurobiol Aging 62: 159–167. 10.1016/j.neurobiolaging.2017.09.030 PubMed DOI
Yates RM, Hermetter A, Taylor GA, Russell DG (2007) Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8: 241–250. 10.1111/j.1600-0854.2006.00528.x PubMed DOI
Yue X, Shan B, A Lasky J (2010) TGF-β: Titan of lung fibrogenesis. Curr Enzyme Inhib 6: 67–77. 10.2174/157340810791233033 PubMed DOI PMC
Zhang D, Leung N, Weber E, Saftig P, Brömme D (2011) The effect of cathepsin K deficiency on airway development and TGF-β1 degradation. Respir Res 12: 72. 10.1186/1465-9921-12-72 PubMed DOI PMC
Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu X, Cai S, et al. (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7: 52294–52306. 10.18632/oncotarget.10561 PubMed DOI PMC