Low-cost and prototype-friendly method for biocompatible encapsulation of implantable electronics with epoxy overmolding, hermetic feedthroughs and P3HT coating
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36717683
PubMed Central
PMC9887057
DOI
10.1038/s41598-023-28699-6
PII: 10.1038/s41598-023-28699-6
Knihovny.cz E-zdroje
- MeSH
- elektronika MeSH
- epoxidové pryskyřice * MeSH
- protézy a implantáty * MeSH
- silikony MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epoxidové pryskyřice * MeSH
- silikony MeSH
- voda MeSH
The research of novel implantable medical devices is one of the most attractive, yet complex areas in the biomedical field. The design and development of sufficiently small devices working in an in vivo environment is challenging but successful encapsulation of such devices is even more so. Industry-standard methods using glass and titanium are too expensive and tedious, and epoxy or silicone encapsulation is prone to water ingress with cable feedthroughs being the most frequent point of failure. This paper describes a universal and straightforward method for reliable encapsulation of circuit boards that achieves ISO10993 compliance. A two-part PVDF mold was machined using a conventional 3-axis machining center. Then, the circuit board with a hermetic feedthrough was placed in the mold and epoxy resin was injected into the mold under pressure to fill the cavity. Finally, the biocompatibility was further enhanced with an inert P3HT polymer coating which can be easily formulated into an ink. The biocompatibility of the encapsulants was assessed according to ISO10993. The endurance of the presented solution compared to silicone potting and epoxy potting was assessed by submersion in phosphate-buffered saline solution at 37 °C. The proposed method showed superior results to PDMS and simple epoxy potting.
Zobrazit více v PubMed
Winkler S, Edelmann J, Welsch C, Ruff R. Different encapsulation strategies for implanted electronics. Curr. Dir. Biomed. Eng. 2017;3(2):725–728. doi: 10.1515/cdbme-2017-0153. DOI
Ahn, Jeong, Kim Emerging encapsulation technologies for long-term reliability of microfabricated implantable devices. Micromachines. 2019;10(8):508. doi: 10.3390/mi10080508. PubMed DOI PMC
Seok S. Polymer-based biocompatible packaging for implantable devices: Packaging method, materials, and reliability simulation. Micromachines. 2021;12(9):1020. doi: 10.3390/mi12091020. PubMed DOI PMC
Jeong J, Chou N, Kim S. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate. Biomed. Microdevices. 2016;18:3. doi: 10.1007/s10544-016-0065-z. PubMed DOI
Poojari Y. Silicones for encapsulation of medical device implants. SILICON. 2017;9(5):645–649. doi: 10.1007/s12633-017-9603-4. DOI
Moazzam Z, Paquette J, Duke AR, Khodaparast N, Yoo PB. Feasibility of long-term tibial nerve stimulation using a multi-contact and wirelessly powered neurostimulation system implanted in rats. Urology. 2017;102:61–67. doi: 10.1016/j.urology.2016.11.013. PubMed DOI
Perry DWJ, Grayden DB, Shepherd RK, Fallon JB. A fully implantable rodent neural stimulator. J. Neural Eng. 2012;9(1):014001. doi: 10.1088/1741-2560/9/1/014001. PubMed DOI PMC
Morales JMH. Evaluating Biocompatible Barrier Films as Encapsulants of Medical Micro Devices. Université Grenoble Alpes; 2015.
Hassanpour-Tamrin S, Sanati-Nezhad A, Sen A. A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics. Sci. Rep. 2021;11(1):4821. doi: 10.1038/s41598-021-83011-8. PubMed DOI PMC
Lonys L, et al. Silicone rubber encapsulation for an endoscopically implantable gastrostimulator. Med. Biol. Eng. Comput. 2015;53(4):319–329. doi: 10.1007/s11517-014-1236-9. PubMed DOI
Pederson DJ, et al. The bionode. ACM Trans. Embed. Comput. Syst. 2019;18(1):1–20. doi: 10.1145/3301310. PubMed DOI
Zhao J, et al. Self-powered implantable medical devices: Photovoltaic energy harvesting review. Adv. Healthc. Mater. 2020;9(17):2000779. doi: 10.1002/adhm.202000779. PubMed DOI
Boeser, F., Ordonez, J. S., Schuettler, M., Stieglitz, T. & Plachta, D. T. T. Non-hermetic encapsulation for implantable electronic devices based on epoxy. In Proceedings of Annual International Conference on IEEE-Engineering in Medicine and Biology Society-EMBS, vol. 2015-November, pp. 809–812 (2015). 10.1109/EMBC.2015.7318485. PubMed
Veiseh O, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 2015;14(6):643–651. doi: 10.1038/nmat4290. PubMed DOI PMC
Chen JC, et al. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 2022;6(6):706–716. doi: 10.1038/s41551-022-00873-7. PubMed DOI PMC
Plocksties F, et al. The software defined implantable modular platform (STELLA) for preclinical deep brain stimulation research in rodents. J. Neural Eng. 2021;18:5. doi: 10.1088/1741-2552/ac23e1. PubMed DOI
Scarpa G, Idzko A-L, Götz S, Thalhammer S. Biocompatibility studies of functionalized regioregular poly(3-hexylthiophene) layers for sensing applications. Macromol. Biosci. 2010;10(4):378–383. doi: 10.1002/mabi.200900412. PubMed DOI
Zucchetti E, et al. Poly(3-hexylthiophene) nanoparticles for biophotonics: Study of the mutual interaction with living cells. J. Mater. Chem. B. 2017;5(3):565–574. doi: 10.1039/c6tb02047j. PubMed DOI
Kuppusami S, Oskouei RH. Parylene coatings in medical devices and implants: A review. Univers. J. Biomed. Eng. 2015;3(2):9–14. doi: 10.13189/ujbe.2015.030201. DOI
ISO. 10993-5:2009—Biological evaluation of medical devices—part 5: Tests for in vitro cytotoxicity (2009). https://www.iso.org/standard/36406.html.
EC. DB-ALM Protocol n° 46 : BALB/c 3T3 Neutral Red Uptake (NRU) Cytotoxicity Test. (2019). https://www.semanticscholar.org/paper/DB-ALM-Protocol-n°-46-%3A-BALB%2Fc-3T3-Neutral-Red-Test/1d3e437bfc426cdf1f73349c5d2e2a8c42b40dc5?sort=relevance&citationIntent=methodology.
ISO. 10993-23:2021—Biological evaluation of medical devices—part 10: Tests skin sensitization (2021). https://www.iso.org/standard/74151.html.
ISO. 10993-12:2021—Biological evaluation of medical devices—part 12: Sample preparation and reference materials (2021). https://www.iso.org/standard/75769.html.
WMA. WMA Declaration of Helsinki—Ethical Principles For Medical Research Involving Human Subjects (1964). https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. PubMed
CIOMS. International Ethical Guidelines for Health-related Research Involving Humans (2016). https://cioms.ch/publications/product/international-ethical-guidelines-for-health-related-research-involving-humans/. PubMed
ISO. 14155:2020. Clinical investigation of medical devices for human subjects—Good clinical practice (2020). https://www.iso.org/standard/71690.html.
Test No. 442C: In Chemico Skin Sensitisation (OECD, 2021).
Eskes C, van Vliet E, Maibach HI, editors. Alternatives for Dermal Toxicity Testing. Springer International Publishing; 2017.
Urbisch D, et al. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul. Toxicol. Pharmacol. 2015;71(2):337–351. doi: 10.1016/j.yrtph.2014.12.008. PubMed DOI
Test No. 442D: In Vitro Skin Sensitisation (OECD, 2018).
Ramirez, T., Mehling, A. & Landsiedel, R. LuSens: Shedding Light on Skin Sensitization. In Alternatives for Dermal Toxicity Testing, 249–262 (Cham: Springer International Publishing, 2017). 10.1007/978-3-319-50353-0_18.
ISO. 10993-10:2021—Biological evaluation of medical devices—part 10: Tests for skin sensitization (2021). https://www.iso.org/standard/75279.html.
Test No. 442A: Skin Sensitization (OECD, 2010).
Tao Y, Hierlemann A. A 15-channel 30-V neural stimulator for spinal cord repair. IEEE Trans. Very Large Scale Integr. Syst. 2018;26(10):2185–2189. doi: 10.1109/TVLSI.2018.2832051. PubMed DOI PMC
Palomeque-Mangut D, Rodríguez-Vázquez Á, Delgado-Restituto M. A fully integrated, power-efficient, 0.07–2.08 mA, high-voltage neural stimulator in a standard CMOS process. Sensors. 2022;22:17. doi: 10.3390/s22176429. PubMed DOI PMC
Zuber M, Roos M, Kobza R, Toggweiler S, Meier R, Erne P. Detection and hemodynamic significance of cardiac pacemaker-induced phrenic nerve stimulation. Congest. Hear. Fail. 2010;16(4):147–152. doi: 10.1111/j.1751-7133.2010.00157.x. PubMed DOI
Diodes Inc. 1N4148/1N4448 Fast Switching Diode (2008). www.diodes.com. Accessed 18 Jun 2022.
International Standardization Organization. ISO 10993-1, ‘Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process’.
Henkel. LOCTITE® EA M-31CLTM—Technical Data Sheet (2015). https://datasheet.octopart.com/235021-Loctite-datasheet-44440513.pdf. Accessed 10 Apr 2022.