Identification of the molecular determinants of antagonist potency in the allosteric binding pocket of human P2X4
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36843952
PubMed Central
PMC9947563
DOI
10.3389/fphar.2023.1101023
PII: 1101023
Knihovny.cz E-zdroje
- Klíčová slova
- BX430, P2X4, allosteric antagonist, calcium channel, structure-function,
- Publikační typ
- časopisecké články MeSH
P2X receptors are a family of ATP-gated cation channels comprising seven subtypes in mammals, which play key roles in nerve transmission, pain sensation and inflammation. The P2X4 receptor in particular has attracted significant interest from pharmaceutical companies due to its physiological roles in neuropathic pain and modulation of vascular tone. A number of potent small-molecule P2X4 receptor antagonists have been developed, including the allosteric P2X4 receptor antagonist BX430, which is approximately 30-fold more potent at human P2X4 compared with the rat isoform. A single amino-acid difference between human and rat P2X4 (I312T), located in an allosteric pocket, has previously been identified as critical for BX430 sensitivity, implying that BX430 binds in this pocket. Using a combination of mutagenesis, functional assay in mammalian cells and in silico docking we confirmed these findings. Induced-fit docking, permitting the sidechains of the amino-acids of P2X4 to move, showed that BX430 could access a deeper portion of the allosteric pocket, and that the sidechain of Lys-298 was important for shaping the cavity. We then performed blind docking of 12 additional P2X4 antagonists into the receptor extracellular domain, finding that many of these compounds favored the same pocket as BX430 from their calculated binding energies. Induced-fit docking of these compounds in the allosteric pocket enabled us to show that antagonists with high potency (IC50 ≤ 100 nM) bind deep in the allosteric pocket, disrupting a network of interacting amino acids including Asp-85, Ala-87, Asp-88, and Ala-297, which are vital for transmitting the conformational change following ATP binding to channel gating. Our work confirms the importance of Ile-312 for BX430 sensitivity, demonstrates that the allosteric pocket where BX430 binds is a plausible binding pocket for a series of P2X4 antagonists, and suggests a mode of action for these allosteric antagonists involving disruption of a key structural motif required for the conformational change induced in P2X4 when ATP binds.
Department of Organic Chemistry Vysoká škola chemicko technologická Praha Prague Czechia
School of Biosciences Cardiff University Cardiff United Kingdom
School of Pharmacy and Pharmaceutical Sciences Cardiff University Cardiff United Kingdom
Zobrazit více v PubMed
Abdelrahman A., Namasivayam V., Hinz S., Schiedel A. C., Köse M., Burton M., et al. (2017). Characterization of P2X4 receptor agonists and antagonists by calcium influx and radioligand binding studies. Biochem. Pharmacol. 125, 41–54. 10.1016/j.bcp.2016.11.016 PubMed DOI
Ase A. R., Honson N. S., Zaghdane H., Pfeifer T. A., Seguela P. (2015). Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels. Mol. Pharmacol. 87, 606–616. 10.1124/mol.114.096222 PubMed DOI
Ase A. R., Therrien E., Seguela P. (2019). An allosteric inhibitory site conserved in the ectodomain of P2X receptor channels. Front. Cell Neurosci. 13, 121. 10.3389/fncel.2019.00121 PubMed DOI PMC
Bidula S., Nadzirin I. B., Cominetti M., Hickey H., Cullum S. A., Searcey M., et al. (2022). Structural basis of the negative allosteric modulation of 5-BDBD at human P2X4 receptors. Mol. Pharmacol. 101, 33–44. 10.1124/molpharm.121.000402 PubMed DOI
Bootman M. D., Rietdorf K., Collins T., Walker S., Sanderson M. (2013). Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb. Protoc. 2013, 83–99. 10.1101/pdb.top066050 PubMed DOI
Carnero Corrales M. A., Zinken S., Konstantinidis G., Rafehi M., Abdelrahman A., Wu Y., et al. (2021). Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin. Cell Chem. Biol. 28, 1750–1757.e5. 10.1016/j.chembiol.2021.02.017 PubMed DOI
Coddou C., Sandoval R., Hevia M. J., Stojilkovic S. S. (2019). Characterization of the antagonist actions of 5-BDBD at the rat P2X4 receptor. Neurosci. Lett. 690, 219–224. 10.1016/j.neulet.2018.10.047 PubMed DOI PMC
Fischer R., Kalthof B., Grützmann R., Woltering E., Stelte-Ludwig B., Wuttke M. (2004). Benzofuro-1,4-diazepin-2-one derivatives. Patent No WO2004085440A1. Geneva, Switzerland: World Intellectual Property Organisation.
Garcia-Guzman M., Soto F., Gomez-Hernandez J. M., Lund P. E., Stuhmer W. (1997). Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol. Pharmacol. 51, 109–118. 10.1124/mol.51.1.109 PubMed DOI
Hattori M., Gouaux E. (2012). Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485, 207–212. 10.1038/nature11010 PubMed DOI PMC
Hernandez-Olmos V., Abdelrahman A., El-Tayeb A., Freudendahl D., Weinhausen S., Muller C. E. (2012). N-Substituted phenoxazine and acridone derivatives: Structure-activity relationships of potent P2X4 receptor antagonists. J. Med. Chem. 55, 9576–9588. 10.1021/jm300845v PubMed DOI
Karasawa A., Kawate T. (2016). Structural basis for subtype-specific inhibition of the P2X7 receptor. Elife 5, e22153. 10.7554/eLife.22153 PubMed DOI PMC
Laskowski R. A., Macarthur M. W., Moss D. S., Thornton J. M. (1993). Procheck: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291. 10.1107/s0021889892009944 DOI
Mahmood A., Ali Shah S. J., Iqbal J. (2022a). Design and synthesis of adamantane-1-carbonyl thiourea derivatives as potent and selective inhibitors of h-P2X4 and h-P2X7 receptors: An Emerging therapeutic tool for treatment of inflammation and neurological disorders. Eur. J. Med. Chem. 231, 114162. 10.1016/j.ejmech.2022.114162 PubMed DOI
Mahmood A., Villinger A., Iqbal J. (2022b). Therapeutic potentials and structure-activity relationship of 1,3-benzodioxole N-carbamothioyl carboxamide derivatives as selective and potent antagonists of P2X4 and P2X7 receptors. Eur. J. Med. Chem. 238, 114491. 10.1016/j.ejmech.2022.114491 PubMed DOI
Matsumura Y., Yamashita T., Sasaki A., Nakata E., Kohno K., Masuda T., et al. (2016). A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci. Rep. 6, 32461. 10.1038/srep32461 PubMed DOI PMC
Mccarthy A. E., Yoshioka C., Mansoor S. E. (2019). Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization. Cell 179, 659–670. 10.1016/j.cell.2019.09.017 PubMed DOI PMC
Newcom J. S., Spear K. L. (2013). P2x4 receptor modulating compounds. Patent No WO2015088564A1. Geneva, Switzerland: World Intellectual Property Organisation.
North R. A., Jarvis M. F. (2013). P2X receptors as drug targets. Mol. Pharmacol. 83, 759–769. 10.1124/mol.112.083758 PubMed DOI PMC
North R. A. (2016). P2X receptors. Philos. Trans. R. Soc. Lond B Biol. Sci. 371, 20150427. 10.1098/rstb.2015.0427 PubMed DOI PMC
Royle S. J., Qureshi O. S., Bobanovic L. K., Evans P. R., Owen D. J., Murrell-Lagnado R. D. (2005). Non-canonical YXXGPhi endocytic motifs: Recognition by AP2 and preferential utilization in P2X4 receptors. J. Cell Sci. 118, 3073–3080. 10.1242/jcs.02451 PubMed DOI
Sanchez-Linares I., Perez-Sanchez H., Cecilia J. M., Garcia J. M. (2012). High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinforma. 13 (14), S13. 10.1186/1471-2105-13-S14-S13 PubMed DOI PMC
Sophocleous R. A., Miles N. A., Ooi L., Sluyter R. (2020). P2Y2 and P2X4 receptors mediate Ca2+ mobilization in DH82 canine macrophage cells. Int. J. Mol. Sci. 21, 8572. 10.3390/ijms21228572 PubMed DOI PMC
Soto F., Garcia-Guzman M., Gomez-Hernandez J. M., Hollmann M., Karschin C., Stuhmer W. (1996). P2X4: An ATP-activated ionotropic receptor cloned from rat brain. Proc. Natl. Acad. Sci. U. S. A. 93, 3684–3688. 10.1073/pnas.93.8.3684 PubMed DOI PMC
Stokes L., Scurrah K., Ellis J. A., Cromer B. A., Skarratt K. K., Gu B. J., et al. (2011). A loss-of-function polymorphism in the human P2X4 receptor is associated with increased pulse pressure. Hypertension 58, 1086–1092. 10.1161/HYPERTENSIONAHA.111.176180 PubMed DOI
Tian M., Abdelrahman A., Baqi Y., Fuentes E., Azazna D., Spanier C., et al. (2020). Discovery and structure relationships of salicylanilide derivatives as potent, non-acidic P2X1 receptor antagonists. J. Med. Chem. 63, 6164–6178. 10.1021/acs.jmedchem.0c00435 PubMed DOI
Tsuda M., Shigemoto-Mogami Y., Koizumi S., Mizokoshi A., Kohsaka S., Salter M. W., et al. (2003). P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783. 10.1038/nature01786 PubMed DOI
Ushioda M., Kobayashi K., Saito D., Sakuma S., Imai T., Inoue K. (2020). P2X4 receptor antagonist. Patent No US11434207B2. United States: Patent.
Weinhausen S., Nagel J., Namasivayam V., Spanier C., Abdelrahman A., Hanck T., et al. (2022). Extracellular binding sites of positive and negative allosteric P2X4 receptor modulators. Life Sci. 31, 121143. 10.1016/j.lfs.2022.121143 PubMed DOI
Werner S., Mesch S., Hillig R. C., Ter Laak A., Klint J., Neagoe I., et al. (2019). Discovery and characterization of the potent and selective P2X4 inhibitor N-[4-(3-Chlorophenoxy)-3-sulfamoylphenyl]-2-phenylacetamide (BAY-1797) and structure-guided amelioration of its CYP3A4 induction profile. J. Med. Chem. 62, 11194–11217. 10.1021/acs.jmedchem.9b01304 PubMed DOI
Yamamoto K., Sokabe T., Matsumoto T., Yoshimura K., Shibata M., Ohura N., et al. (2006). Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat. Med. 12, 133–137. 10.1038/nm1338 PubMed DOI
Young M. T., Fisher J. A., Fountain S. J., Ford R. C., North R. A., Khakh B. S. (2008). Molecular shape, architecture, and size of P2X4 receptors determined using fluorescence resonance energy transfer and electron microscopy. J. Biol. Chem. 283, 26241–26251. 10.1074/jbc.M804458200 PubMed DOI PMC
Zhao W. S., Sun M. Y., Sun L. F., Liu Y., Yang Y., Huang L. D., et al. (2016). A highly conserved salt bridge stabilizes the kinked conformation of β2,3-sheet essential for channel function of P2X4 receptors. J. Biol. Chem. 291, 7990–8003. 10.1074/jbc.M115.711127 PubMed DOI PMC