• This record comes from PubMed

X-ray structure of human aldo-keto reductase 1C3 in complex with a bile acid fused tetrazole inhibitor: experimental validation, molecular docking and structural analysis

. 2023 Feb 22 ; 14 (2) : 341-355. [epub] 20221201

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3. Four C24 bile acids with C-ring fused tetrazoles were moderate to strong AKR1C3 inhibitors (37-88% inhibition), while B-ring fused tetrazoles had no effect on AKR1C3 activity. Based on a fluorescence assay in yeast cells, these four compounds displayed no affinity for estrogen receptor-α, or the androgen receptor, suggesting a lack of estrogenic or androgenic effects. A top inhibitor showed specificity for AKR1C3 over AKR1C2, and inhibited AKR1C3 with an IC50 of ∼7 μM. The structure of AKR1C3·NADP+ in complex with this C-ring fused bile acid tetrazole was determined by X-ray crystallography at 1.4 Å resolution, revealing that the C24 carboxylate is anchored to the catalytic oxyanion site (H117, Y55); meanwhile the tetrazole interacts with a tryptophan (W227) important for steroid recognition. Molecular docking predicts that all four top AKR1C3 inhibitors bind with nearly identical geometry, suggesting that C-ring bile acid fused tetrazoles represent a new class of AKR1C3 inhibitors.

See more in PubMed

Penning T. M. AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol. Cell. Endocrinol. 2019;489:82–91. doi: 10.1016/j.mce.2018.07.002. doi: 10.1016/j.mce.2018.07.002. PubMed DOI PMC

Penning T. M. The aldo-keto reductases (AKRs): Overview. Chem.-Biol. Interact. 2015;234:236–246. doi: 10.1016/j.cbi.2014.09.024. doi: 10.1016/j.cbi.2014.09.024. PubMed DOI PMC

Penning T. M. Wangtrakuldee P. Auchus R. J. Structural and functional biology of aldo-keto reductase steroid-transforming enzymes. Endocr. Rev. 2019;40(2):447–475. doi: 10.1210/er.2018-00089. doi: 10.1210/er.2018-00089. PubMed DOI PMC

Adeniji A. O. Chen M. Penning T. M. AKR1C3 as a target in castrate resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 2013;137:136–149. doi: 10.1016/j.jsbmb.2013.05.012. doi: 10.1016/j.jsbmb.2013.05.012. PubMed DOI PMC

Liedtke A. J. Adeniji A. O. Chen M. et al., Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (Type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. J. Med. Chem. 2013;56(6):2429–2446. doi: 10.1021/jm3017656. doi: 10.1021/jm3017656. PubMed DOI PMC

Zeng C. M. Chang L. L. Ying M. D. Cao J. He Q. J. Zhu H. Yang B. Aldo-keto reductase AKR1C1-AKR1C4: Functions, regulation, and intervention for anti-cancer therapy. Front. Pharmacol. 2017;8:119. doi: 10.3389/fphar.2017.00119. PubMed DOI PMC

Liu C. Lou W. Zhu Y. et al., Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer. Cancer Res. 2015;75(7):1413–1422. doi: 10.1158/0008-5472.CAN-14-3080. doi: 10.1158/0008-5472.CAN-14-3080. PubMed DOI PMC

Liu C. Armstrong C. M. Lou W. Lombard A. Evans C. P. Gao A. C. Inhibition of AKR1C3 Activation Overcomes Resistance to Abiraterone in Advanced Prostate Cancer. Mol. Cancer Ther. 2017;16(1):35–44. doi: 10.1158/1535-7163.MCT-16-0186. doi: 10.1158/1535-7163.MCT-16-0186. PubMed DOI PMC

Zhao J. Ning S. Lou W. et al., Cross-Resistance Among Next-Generation Antiandrogen Drugs Through the AKR1C3/AR-V7 Axis in Advanced Prostate Cancer. Mol. Cancer Ther. 2020;19(8):1708–1718. doi: 10.1158/1535-7163.MCT-20-0015. doi: 10.1158/1535-7163.MCT-20-0015. PubMed DOI PMC

Verma K. Zang T. Penning T. M. Trippier P. C. Potent and Highly Selective Aldo-Keto Reductase 1C3 (AKR1C3) Inhibitors Act as Chemotherapeutic Potentiators in Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. J. Med. Chem. 2019;62(7):3590–3616. doi: 10.1021/acs.jmedchem.9b00090. doi: 10.1021/acs.jmedchem.9b00090. PubMed DOI PMC

Khanim F. Davies N. Veliça P. et al., Selective AKR1C3 inhibitors do not recapitulate the anti-leukaemic activities of the pan-AKR1C inhibitor medroxyprogesterone acetate. Br. J. Cancer. 2014;110(6):1506–1516. doi: 10.1038/bjc.2014.83. doi: 10.1038/bjc.2014.83. PubMed DOI PMC

Komoto J. Yamada T. Watanabe K. Takusagawa F. Crystal structure of human prostaglandin F synthase (AKR1C3) Biochemistry. 2004;43(8):2188–2198. doi: 10.1021/bi036046x. doi: 10.1021/bi036046x. PubMed DOI

Khanim F. L. Hayden R. E. Birtwistle J. et al., Combined bezafibrate and medroxyprogesterone acetate: potential novel therapy for acute myeloid leukaemia. PLoS One. 2009;4(12):e8147. doi: 10.1371/journal.pone.0008147. doi: 10.1371/journal.pone.0008147. PubMed DOI PMC

Murray J. A. Khanim F. L. Hayden R. E. et al., Combined bezafibrate and medroxyprogesterone acetate have efficacy without haematological toxicity in elderly and relapsed acute myeloid leukaemia (AML) Br. J. Haematol. 2010;149(1):65–69. doi: 10.1111/j.1365-2141.2009.08055.x. doi: 10.1111/j.1365-2141.2009.08055.x. PubMed DOI

Bortolozzi R. Bresolin S. Rampazzo E. et al., AKR1C enzymes sustain therapy resistance in paediatric T-ALL/631/67/1059/2326/631/67/1990/283/2125 article. Br. J. Cancer. 2018;118(7):985–994. doi: 10.1038/s41416-018-0014-0. doi: 10.1038/s41416-018-0014-0. PubMed DOI PMC

Wang Y. Liu Y. Zhou C. et al., An AKR1C3-specific prodrug with potent anti-tumor activities against T-ALL. Leuk. Lymphoma. 2020;61(7):1660–1668. doi: 10.1080/10428194.2020.1728746. doi: 10.1080/10428194.2020.1728746. PubMed DOI

Penning T. M. Jonnalagadda S. Trippier P. C. Rižner T. L. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol. Rev. 2021;73(3):1150–1171. doi: 10.1124/pharmrev.120.000122. doi: 10.1124/pharmrev.120.000122. PubMed DOI PMC

Brožič P. Turk S. Rižner T. L. Gobec S. Inhibitors of aldo-keto reductases AKR1C1-AKR1C4. Curr. Med. Chem. 2011;18(17):2554–2565. doi: 10.2174/092986711795933713. doi: 10.2174/092986711795933713. PubMed DOI

Liu Y. He S. Chen Y. et al., Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J. Med. Chem. 2020;63(20):11305–11329. doi: 10.1021/acs.jmedchem.9b02138. doi: 10.1021/acs.jmedchem.9b02138. PubMed DOI

Flanagan J. U. Yosaatmadja Y. Teague R. M. Chai M. Z. L. Turnbull A. P. Squire C. J. Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3. PLoS One. 2012;7(8):e43965. doi: 10.1371/journal.pone.0043965. doi: 10.1371/journal.pone.0043965. PubMed DOI PMC

Qiu W. Zhou M. Mazumdar M. et al., Structure-based inhibitor design for an enzyme that binds different steroids: a potent inhibitor for human type 5 17beta-hydroxysteroid dehydrogenase. J. Biol. Chem. 2007;282(11):8368–8379. doi: 10.1074/jbc.M606784200. doi: 10.1074/jbc.M606784200. PubMed DOI

Chen M. Adeniji A. O. Twenter B. M. Winkler J. D. Christianson D. W. Penning T. M. Crystal structures of AKR1C3 containing an N-(aryl)amino-benzoate inhibitor and a bifunctional AKR1C3 inhibitor and androgen receptor antagonist. Therapeutic leads for castrate resistant prostate cancer. Bioorg. Med. Chem. Lett. 2012;22(10):3492–3497. doi: 10.1016/j.bmcl.2012.03.085. doi: 10.1016/j.bmcl.2012.03.085. PubMed DOI PMC

Lovering A. L. Ride J. P. Bunce C. M. Desmond J. C. Cummings S. M. White S. A. Crystal Structures of Prostaglandin D2 11-Ketoreductase (AKR1C3) in Complex with the Nonsteroidal Anti-Inflammatory Drugs Flufenamic Acid and Indomethacin. Cancer Res. 2004;64(5):1802–1810. doi: 10.1158/0008-5472.CAN-03-2847. doi: 10.1158/0008-5472.CAN-03-2847. PubMed DOI

Jin Y. Stayrook S. E. Albert R. H. Palackal N. T. Penning T. M. Lewis M. Crystal structure of human type III 3α-hydroxysteroid dehydrogenase/bile acid binding protein complexed with NADP+ and ursodeoxycholate. Biochemistry. 2001;40(34):10161–10168. doi: 10.1021/bi010919a. doi: 10.1021/bi010919a. PubMed DOI

Bauman D. R. Rudnick S. I. Szewczuk L. M. Jin Y. Gopishetty S. Penning T. M. Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo-keto reductase isoforms: Potential antineoplastic agents that work independently of cyclooxygenase isozymes. Mol. Pharmacol. 2005;67(1):60–68. doi: 10.1124/mol.104.006569. doi: 10.1124/mol.104.006569. PubMed DOI

Marinović M. A. Petri E. T. Grbović L. M. et al., Investigation of the Potential of Bile Acid Methyl Esters as Inhibitors of Aldo-keto Reductase 1C2: Insight from Molecular Docking, Virtual Screening, Experimental Assays and Molecular Dynamics. Mol. Inf. 2022:e2100256. doi: 10.1002/minf.202100256. doi: 10.1002/minf.202100256. PubMed DOI

Savić M. P. Ajduković J. J. Plavša J. J. et al., Evaluation of A-ring fused pyridine d-modified androstane derivatives for antiproliferative and aldo-keto reductase 1C3 inhibitory activity. MedChemComm. 2018;9(6):969–981. doi: 10.1039/c8md00077h. doi: 10.1039/C8MD00077H. PubMed DOI PMC

Škorić D. Đ. Klisurić O. R. Jakimov D. S. Sakač M. N. Csanádi J. J. Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction. Beilstein J. Org. Chem. 2021;17:2611–2620. doi: 10.3762/bjoc.17.174. doi: 10.3762/bjoc.17.174. PubMed DOI PMC

Zhang J. Wang S. Ba Y. Xu Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem. 2019;178:341–351. doi: 10.1016/j.ejmech.2019.05.071. doi: 10.1016/j.ejmech.2019.05.071. PubMed DOI

Sun M. Zhou Y. Zhuo X. et al., Design, Synthesis and Cytotoxicity Evaluation of Novel Indole Derivatives Containing Benzoic Acid Group as Potential AKR1C3 Inhibitors. Chem. Biodiversity. 2020;17(12):e2000519. doi: 10.1002/cbdv.202000519. doi: 10.1002/cbdv.202000519. PubMed DOI

Brožič P. Turk S. Adeniji A. O. et al., Selective inhibitors of aldo-keto reductases AKR1C1 and AKR1C3 discovered by virtual screening of a fragment library. J. Med. Chem. 2012;55(17):7417–7424. doi: 10.1021/jm300841n. doi: 10.1021/jm300841n. PubMed DOI PMC

Byrns M. C. Steckelbroeck S. Penning T. M. An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3alpha-HSD, type 5 17beta-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone indep. Biochem. Pharmacol. 2008;75(2):484–493. doi: 10.1016/j.bcp.2007.09.008. doi: 10.1016/j.bcp.2007.09.008. PubMed DOI PMC

Muddana S. S. Peterson B. R. Fluorescent cellular sensors of steroid receptor ligands. ChemBioChem. 2003;4(9):848–855. doi: 10.1002/cbic.200300606. doi: 10.1002/cbic.200300606. PubMed DOI

Bekić S. S. Marinović M. A. Petri E. T. et al., Identification of D-seco modified steroid derivatives with affinity for estrogen receptor α and β isoforms using a non-transcriptional fluorescent cell assay in yeast. Steroids. 2018;130:22–30. doi: 10.1016/j.steroids.2017.12.002. doi: 10.1016/j.steroids.2017.12.002. PubMed DOI

Vasiljević B. R. Petri E. T. Bekić S. S. Ćelić A. S. Grbović L. M. Pavlović K. J. Microwave-assisted green synthesis of bile acid derivatives and evaluation of glucocorticoid receptor binding. RSC Med. Chem. 2021;12(2):278–287. doi: 10.1039/d0md00311e. doi: 10.1039/D0MD00311E. PubMed DOI PMC

Diederichs K. Karplus P. A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 1997;4(4):269–275. doi: 10.1038/nsb0497-269. doi: 10.1038/nsb0497-269. PubMed DOI

Karplus P. A. Diederichs K. Linking crystallographic model and data quality. Science. 2012;336(6084):1030–1033. doi: 10.1126/science.1218231. doi: 10.1126/science.1218231. PubMed DOI PMC

The CCP4 suite: programs for protein crystallography, Acta Crystallogr., Sect. D: Biol. Crystallogr., 1994, 50(Pt 5), 760–763, 10.1107/S0907444994003112 PubMed DOI

Brünger A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature. 1992;355(6359):472–475. doi: 10.1038/355472a0. doi: 10.1038/355472a0. PubMed DOI

Chen V. B. Arendall 3rd W. B. Headd J. J. et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010;66(Pt 1):12–21. doi: 10.1107/S0907444909042073. doi: 10.1107/S0907444909042073. PubMed DOI PMC

Byrns M. C. Jin Y. Penning T. M. Inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3): Overview and structural insights. J. Steroid Biochem. Mol. Biol. 2011;125(1–2):95–104. doi: 10.1016/j.jsbmb.2010.11.004. doi: 10.1016/j.jsbmb.2010.11.004. PubMed DOI PMC

Wallace A. C. Laskowski R. A. Thornton J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127–134. doi: 10.1093/protein/8.2.127. doi: 10.1093/protein/8.2.127. PubMed DOI

Laskowski R. A. Swindells M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011;51(10):2778–2786. doi: 10.1021/ci200227u. doi: 10.1021/ci200227u. PubMed DOI

DeLano W. L. The case for open-source software in drug discovery. Drug Discovery Today. 2005;10(3):213–217. doi: 10.1016/S1359-6446(04)03363-X. doi: 10.1016/S1359-6446(04)03363-X. PubMed DOI

Morris G. M. Ruth H. Lindstrom W. et al., Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30(16):2785–2791. doi: 10.1002/jcc.21256. doi: 10.1002/jcc.21256. PubMed DOI PMC

Dallakyan S. and Olson A. J., Small-molecule library screening by docking with PyRx, in Methods in Molecular Biology, Springer New York, 2015, vol. 1263, pp. 243–250, 10.1007/978-1-4939-2269-7_19 PubMed DOI

Saikia S. Bordoloi M. Molecular Docking: Challenges, Advances and its Use in Drug Discovery Perspective. Curr. Drug Targets. 2019;20(5):501–521. doi: 10.2174/1389450119666181022153016. doi: 10.2174/1389450119666181022153016. PubMed DOI

Stierand K. Rarey M. From modeling to medicinal chemistry: automatic generation of two-dimensional complex diagrams. ChemMedChem. 2007;2(6):853–860. doi: 10.1002/cmdc.200700010. doi: 10.1002/cmdc.200700010. PubMed DOI

Trott O. Olson A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Plavša J. J. Řezáčová P. Kugler M. et al., In situ proteolysis of an N-terminal His tag with thrombin improves the diffraction quality of human aldo-keto reductase 1C3 crystals. Acta Crystallogr., Sect. F: Struct. Biol. Commun. 2018;74(Pt 5):300–306. doi: 10.1107/S2053230X18005721. doi: 10.1107/S2053230X18005721. PubMed DOI PMC

Gorrec F. The MORPHEUS protein crystallization screen. J. Appl. Crystallogr. 2009;42(Pt 6):1035–1042. doi: 10.1107/S0021889809042022. doi: 10.1107/S0021889809042022. PubMed DOI PMC

Mueller U. Darowski N. Fuchs M. R. et al., Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 2012;19(Pt 3):442–449. doi: 10.1107/S0909049512006395. doi: 10.1107/S0909049512006395. PubMed DOI PMC

Gerlach M. Mueller U. Weiss M. S. The MX beamlines BL14. 1-3 at BESSY II. Journal of large-scale Research Facilities. 2016;2:A47. doi: 10.17815/jlsrf-2-64. doi: 10.17815/jlsrf-2-64. DOI

Kabsch W. XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010;66(Pt 2):125–132. doi: 10.1107/S0907444909047337. doi: 10.1107/S0907444909047337. PubMed DOI PMC

McCoy A. J. Grosse-Kunstleve R. W. Adams P. D. Winn M. D. Storoni L. C. Read R. J. Phaser crystallographic software. J. Appl. Crystallogr. 2007;40(Pt 4):658–674. doi: 10.1107/S0021889807021206. doi: 10.1107/S0021889807021206. PubMed DOI PMC

Winn M. D. Ballard C. C. Cowtan K. D. et al., Overview of the CCP4 suite and current developments. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011;67(Pt 4):235–242. doi: 10.1107/S0907444910045749. doi: 10.1107/S0907444910045749. PubMed DOI PMC

Murshudov G. N. Vagin A. A. Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. doi: 10.1107/S0907444996012255. PubMed DOI

Emsley P. Lohkamp B. Scott W. G. Cowtan K. Features and development of Coot. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010;66(Pt 4):486–501. doi: 10.1107/S0907444910007493. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Winn M. D., Murshudov G. N. and Papiz M. Z., Macromolecular TLS Refinement in REFMAC at Moderate Resolutions, in Macromolecular Crystallography, Part D, Methods in Enzymology, Academic Press, 2003, vol. 374, pp. 300–321, 10.1016/S0076-6879(03)74014-2 PubMed DOI

Gietz D. Jean A. S. Woods R. A. Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992;20(6):1425. doi: 10.1093/nar/20.6.1425. doi: 10.1093/nar/20.6.1425. PubMed DOI PMC

Pedretti A. Mazzolari A. Gervasoni S. Fumagalli L. Vistoli G. The VEGA suite of programs: an versatile platform for cheminformatics and drug design projects. Bioinformatics. 2021;37(8):1174–1175. doi: 10.1093/bioinformatics/btaa774. doi: 10.1093/bioinformatics/btaa774. PubMed DOI

Hanwell M. D. Curtis D. E. Lonie D. C. Vandermeerschd T. Zurek E. Hutchison G. R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...