The association of type and number of high-risk criteria with cancer specific mortality in prostate cancer patients treated with radiotherapy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36919872
DOI
10.1002/pros.24505
Knihovny.cz E-zdroje
- Klíčová slova
- SEER, cancer specific mortality, high risk prostate cancer, radiotherapy, staging,
- MeSH
- biopsie MeSH
- lidé MeSH
- nádory prostaty * patologie MeSH
- proporcionální rizikové modely MeSH
- prostatektomie * metody MeSH
- prostatický specifický antigen MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- prostatický specifický antigen MeSH
BACKGROUND: To assess the association between of type and number of D'Amico high-risk criteria (DHRCs) with rates of cancer-specific mortality (CSM) in prostate cancer (PCa) patients treated with external beam radiotherapy (RT). METHODS: In the Surveillance, Epidemiology, and End Results database (2004-2016), we identified 34,908 RT patients with at least one DHRCs, namely prostate-specific antigen (PSA) >20 ng/dL (hrPSA), biopsy Grade Group (hrGG) 4-5, clinical T stage (hrcT) ≥T2c. Multivariable Cox regression models (CRM), as well as competing risks regression (CRR) model, which further adjust for other cause mortality, tested the association between DHRCs and 5-year CSM. RESULTS: Of 34,908 patients, 14,777 (42%) exclusively harbored hrGG, 5641 (16%) hrPSA, 4390 (13%) had hrcT. Only 8238 (23.7%) harbored any combination of two DHRCs and 1862 (5.3%) had all three DHRCs. Five-year CSM rates ranged from 2.4% to 5.0% when any individual DHRC was present (hrcT, hrPSA, hrGG, in that order), versus 5.2% to 10.5% when two DHRCs were present (hrPSA+hrcT, hrcT+hrGG, hrPSA+hrGG, in that order) versus 14.4% when all three DHRCs were identified. In multivariable CRM hazard ratios relative to hrcT ranged from 1.07 to 1.76 for one DHRC, 2.20 to 3.83 for combinations of two DHRCs, and 5.11 for all three DHRCs. Multivariable CRR yielded to virtually the same results. CONCLUSIONS: Our study indicates a stimulus-response effect according to the type and number of DHRCs. This indicates potential for risk-stratification within HR PCa patients that could be applied in clinical decision making to increase or reduce treatment intensity.
Department of Surgical and Diagnostic Integrated Sciences University of Genova Genova Italy
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Urology University Hospital Frankfurt Frankfurt am Main Germany
Department of Urology University of Texas Southwestern Dallas Texas USA
Departments of Urology Weill Cornell Medical College New York City New York USA
IRCCS Ospedale Policlinico San Martino Genova Italy
Martini Klinik Prostate Cancer Center University Hospital Hamburg Eppendorf Hamburg Germany
Zobrazit více v PubMed
D'Amico AV, Whittington R, Malkowicz SB, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969-974. doi:10.1001/JAMA.280.11.969
Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71(4):618-629. doi:10.1016/J.EURURO.2016.08.003
Graham J, Kirkbride P, Cann K, Hasler E, Prettyjohns M. Prostate cancer: summary of updated NICE guidance. BMJ. 2014;348:f7524. doi:10.1136/BMJ.F7524
Lukka H, Warde P, Pickles T, et al. Controversies in prostate cancer radiotherapy: consensus development. Can J Urol. 2001;8(4):1314-1322.
Sanda MG, Cadeddu JA, Kirkby E, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J Urol. 2018;199(3):683-690. doi:10.1016/J.JURO.2017.11.095
Mohler JL, Armstrong AJ, Bahnson RR, et al. Prostate cancer, version 1.2016. J Natl Compr Canc Netw. 2016;14(1):19-30. doi:10.6004/JNCCN.2016.0004
Zelic R, Garmo H, Zugna D, et al. Predicting prostate cancer death with different pretreatment risk stratification tools: a head-to-head comparison in a nationwide cohort study. Eur Urol. 2020;77(2):180-188. doi:10.1016/J.EURURO.2019.09.027
Cooperberg MR, Cowan J, Broering JM, Carroll PR. High-risk prostate cancer in the United States, 1990-2007. World J Urol. 2008;26(3):211-218. doi:10.1007/s00345-008-0250-7
Leyh-Bannurah SR, Karakiewicz PI, Pompe RS, et al. Inverse stage migration patterns in North American patients undergoing local prostate cancer treatment: a contemporary population-based update in light of the 2012 USPSTF recommendations. World J Urol. 2019;37(3):469-479. doi:10.1007/s00345-018-2396-2
van den Bergh R, Gandaglia G, Tilki D, et al. Trends in radical prostatectomy risk group distribution in a European multicenter analysis of 28 572 patients: towards tailored treatment. Eur Urol Focus. 2019;5(2):171-178. doi:10.1016/j.euf.2017.07.003
Fletcher SA, von Landenberg N, Cole AP, et al. Contemporary national trends in prostate cancer risk profile at diagnosis. Prostate Cancer Prostatic Dis. 2020;23(1):81-87. doi:10.1038/s41391-019-0157-y
Wenzel M, Würnschimmel C, Ruvolo CC, et al. Increasing rates of NCCN high and very high-risk prostate cancer versus number of prostate biopsy cores. Prostate. 2021;81(12):874-881. doi:10.1002/PROS.24184
About the SEER Program., Accessed March 22 2021. https://seer.cancer.gov/about/
Cause-specific Death Classification - SEER Recodes. Accessed August 17 2021. https://seer.cancer.gov/causespecific/
R: The R Project for Statistical Computing. Accessed March 25 2021. https://www.r-project.org/
Flammia RS, Hoeh B, Sorce G, et al. Contemporary seminal vesicle invasion rates in NCCN high-risk prostate cancer patients. Prostate. 2022;82(10):1051-1059. doi:10.1002/pros.24350
Tilki D, Würnschimmel C, Preisser F, et al. The significance of primary biopsy gleason 5 in patients with grade group 5 prostate cancer. Eur Urol Focus. 2020;6(2):255-258. doi:10.1016/j.euf.2020.01.008
Milonas D, Ruzgas T, Venclovas Z, Jievaltas M, Joniau S. Impact of grade groups on prostate cancer-specific and other-cause mortality: competing risk analysis from a large single institution series. Cancers. 2021;13(8):1963. doi:10.3390/cancers13081963
Chierigo F, Borghesi M, Würnschimmel C, et al. Contemporary pathological stage distribution after radical prostatectomy in North American high-risk prostate cancer patients. Clin Genitourin Cancer. 2022;20(5):e380-e389. doi:10.1016/j.clgc.2022.04.005
Wenzel M, Würnschimmel C, Chierigo F, et al. Pattern of Biopsy Gleason Grade Group 5 (4 + 5 vs 5 + 4 vs 5 + 5) predicts survival after radical prostatectomy or external beam radiation therapy. Eur Urol Focus. 2022;8(3):710-717. doi:10.1016/j.euf.2021.04.011
Tsao C, Gray KP, Nakabayashi M, et al. Patients with Biopsy Gleason 9 and 10 prostate cancer have significantly worse outcomes compared to patients with Gleason 8 disease. J Urol. 2015;194(1):91-97. doi:10.1016/j.juro.2015.01.078
Knipper S, Palumbo C, Pecoraro A, et al. Survival outcomes of radical prostatectomy vs. external beam radiation therapy in prostate cancer patients with Gleason Score 9-10 at biopsy: a population-based analysis. Urol Oncol. 2020;38(3):79. doi:10.1016/J.UROLONC.2019.09.015
About the National Cancer Database. Accessed April 20 2021. https://www.facs.org/quality-programs/cancer/ncdb/about