FoxP3 Expression in Tumor-Infiltrating Lymphocytes as Potential Predictor of Response to Immune Checkpoint Inhibitors in Patients with Advanced Melanoma and Non-Small Cell Lung Cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
        Grantová podpora
          
              LX22NPO5102 
          
      National Institute for Cancer Research   
      
          
              NV18-03-00339. 
          
      Czech Ministry of Health   
      
          
              DRO (MMCI, 00209805) 
          
      Czech Ministry of Health   
      
      
    PubMed
          
           36980787
           
          
          
    PubMed Central
          
           PMC10047850
           
          
          
    DOI
          
           10.3390/cancers15061901
           
          
          
      PII:  cancers15061901
  
    Knihovny.cz E-zdroje
    
  
              
      
- Klíčová slova
- NSCLC, anti-tumor immunity, immune checkpoint inhibitors, malignant melanoma, predictive biomarker,
- Publikační typ
- časopisecké články MeSH
Immune checkpoint inhibitors (ICI) are the main therapy currently used in advanced malignant melanoma (MM) and non-small cell lung cancer (NSCLC). Despite the wide variety of uses, the possibility of predicting ICI efficacy in these tumor types is scarce. The aim of our study was to find new predictive biomarkers for ICI treatment. We analyzed, by immunohistochemistry, various cell subsets, including CD3+, CD8+, CD68+, CD20+, and FoxP3+ cells, and molecules such as LAG-3, IDO1, and TGFβ. Comprehensive genomic profiles were analyzed. We evaluated 46 patients with advanced MM (31) and NSCLC (15) treated with ICI monotherapy. When analyzing the malignant melanoma group, shorter median progression-free survival (PFS) was found in tumors positive for nuclear FoxP3 in tumor-infiltrating lymphocytes (TILs) (p = 0.048, HR 3.04) and for CD68 expression (p = 0.034, HR 3.2). Longer PFS was achieved in patients with tumors with PD-L1 TPS ≥ 1 (p = 0.005, HR 0.26). In the NSCLC group, only FoxP3 positivity was associated with shorter PFS and OS. We found that FoxP3 negativity was linked with a better response to ICI in both histological groups.
Zobrazit více v PubMed
Wolchok J.D., Chiarion-Sileni V., Gonzalez R., Grob J.-J., Rutkowski P., Lao C.D., Cowey C.L., Schadendorf D., Wagstaff J., Dummer R., et al. CheckMate 067: 6.5-Year Outcomes in Patients (Pts) with Advanced Melanoma. JCO. 2021;39:9506. doi: 10.1200/JCO.2021.39.15_suppl.9506. DOI
Sezer A., Kilickap S., Gümüş M., Bondarenko I., Özgüroğlu M., Gogishvili M., Turk H.M., Cicin I., Bentsion D., Gladkov O., et al. Cemiplimab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer with PD-L1 of at Least 50%: A Multicentre, Open-Label, Global, Phase 3, Randomised, Controlled Trial. Lancet. 2021;397:592–604. doi: 10.1016/S0140-6736(21)00228-2. PubMed DOI
Reck M., Rodriguez-Abreu D., Robinson A., Hui R., Csoszi T., Fulop A., Gottfried M., Peled N., Tafreshi A., Cuffe S., et al. Updated Analysis of KEYNOTE-024: Pembrolizumab versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. Fac. Sci. Med. Health Pap. Part B. 2019;37:537–546. doi: 10.1200/JCO.18.00149. PubMed DOI
Herbst R.S., Giaccone G., de Marinis F., Reinmuth N., Vergnenegre A., Barrios C.H., Morise M., Felip E., Andric Z., Geater S., et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020;383:1328–1339. doi: 10.1056/NEJMoa1917346. PubMed DOI
Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non–Small Cell Lung Cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348. PubMed DOI PMC
Liu D., Yang X., Wu X. Tumor Immune Microenvironment Characterization Identifies Prognosis and Immunotherapy-Related Gene Signatures in Melanoma. Front. Immunol. 2021;12:663495. doi: 10.3389/fimmu.2021.663495. PubMed DOI PMC
Murciano-Goroff Y.R., Warner A.B., Wolchok J.D. The Future of Cancer Immunotherapy: Microenvironment-Targeting Combinations. Cell Res. 2020;30:507–519. doi: 10.1038/s41422-020-0337-2. PubMed DOI PMC
Gainor J.F., Shaw A.T., Sequist L.V., Fu X., Azzoli C.G., Piotrowska Z., Huynh T., Zhao L., Fulton L., Schultz K.R., et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer (NSCLC): A Retrospective Analysis. Clin. Cancer Res. 2016;22:4585–4593. doi: 10.1158/1078-0432.CCR-15-3101. PubMed DOI PMC
Han J., Khatwani N., Searles T.G., Turk M.J., Angeles C.V. Memory CD8+ T Cell Responses to Cancer. Semin. Immunol. 2020;49:101435. doi: 10.1016/j.smim.2020.101435. PubMed DOI PMC
Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J.M., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., et al. PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature. 2014;515:568–571. doi: 10.1038/nature13954. PubMed DOI PMC
Zhang J., Li S., Liu F., Yang K. Role of CD68 in Tumor Immunity and Prognosis Prediction in Pan-Cancer. Sci. Rep. 2022;12:7844. doi: 10.1038/s41598-022-11503-2. PubMed DOI PMC
Griss J., Bauer W., Wagner C., Simon M., Chen M., Grabmeier-Pfistershammer K., Maurer-Granofszky M., Roka F., Penz T., Bock C., et al. B Cells Sustain Inflammation and Predict Response to Immune Checkpoint Blockade in Human Melanoma. Nat. Commun. 2019;10:4186. doi: 10.1038/s41467-019-12160-2. PubMed DOI PMC
Willsmore Z.N., Harris R.J., Crescioli S., Hussein K., Kakkassery H., Thapa D., Cheung A., Chauhan J., Bax H.J., Chenoweth A., et al. B Cells in Patients With Melanoma: Implications for Treatment With Checkpoint Inhibitor Antibodies. Front. Immunol. 2021;11:622442. doi: 10.3389/fimmu.2020.622442. PubMed DOI PMC
Koyama S., Akbay E.A., Li Y.Y., Herter-Sprie G.S., Buczkowski K.A., Richards W.G., Gandhi L., Redig A.J., Rodig S.J., Asahina H., et al. Adaptive Resistance to Therapeutic PD-1 Blockade Is Associated with Upregulation of Alternative Immune Checkpoints. Nat. Commun. 2016;7:10501. doi: 10.1038/ncomms10501. PubMed DOI PMC
Acharya N., Sabatos-Peyton C., Anderson A.C. Tim-3 Finds Its Place in the Cancer Immunotherapy Landscape. J. Immunother. Cancer. 2020;8:e000911. doi: 10.1136/jitc-2020-000911. PubMed DOI PMC
Liu M., Wang X., Wang L., Ma X., Gong Z., Zhang S., Li Y. Targeting the IDO1 Pathway in Cancer: From Bench to Bedside. J. Hematol. Oncol. 2018;11:100. doi: 10.1186/s13045-018-0644-y. PubMed DOI PMC
Tawbi H.A., Schadendorf D., Lipson E.J., Ascierto P.A., Matamala L., Castillo Gutiérrez E., Rutkowski P., Gogas H.J., Lao C.D., De Menezes J.J., et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022;386:24–34. doi: 10.1056/NEJMoa2109970. PubMed DOI PMC
Long G.V., Dummer R., Hamid O., Gajewski T.F., Caglevic C., Dalle S., Arance A., Carlino M.S., Grob J.-J., Kim T.M., et al. Epacadostat plus Pembrolizumab versus Placebo plus Pembrolizumab in Patients with Unresectable or Metastatic Melanoma (ECHO-301/KEYNOTE-252): A Phase 3, Randomised, Double-Blind Study. Lancet Oncol. 2019;20:1083–1097. doi: 10.1016/S1470-2045(19)30274-8. PubMed DOI
Mariathasan S., Turley S.J., Nickles D., Castiglioni A., Yuen K., Wang Y., Kadel III E.E., Koeppen H., Astarita J.L., Cubas R., et al. TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature. 2018;554:544–548. doi: 10.1038/nature25501. PubMed DOI PMC
Allan S.E., Alstad A.N., Merindol N., Crellin N.K., Amendola M., Bacchetta R., Naldini L., Roncarolo M.G., Soudeyns H., Levings M.K. Generation of Potent and Stable Human CD4+ T Regulatory Cells by Activation-Independent Expression of FOXP3. Mol. Ther. 2008;16:194–202. doi: 10.1038/sj.mt.6300341. PubMed DOI
González-Navajas J.M., Fan D.D., Yang S., Yang F.M., Lozano-Ruiz B., Shen L., Lee J. The Impact of Tregs on the Anticancer Immunity and the Efficacy of Immune Checkpoint Inhibitor Therapies. Front. Immunol. 2021;12:625783. doi: 10.3389/fimmu.2021.625783. PubMed DOI PMC
Ohue Y., Nishikawa H. Regulatory T (Treg) Cells in Cancer: Can Treg Cells Be a New Therapeutic Target? Cancer Sci. 2019;110:2080–2089. doi: 10.1111/cas.14069. PubMed DOI PMC
Zuo T., Wang L., Morrison C., Chang X., Zhang H., Li W., Liu Y., Wang Y., Liu X., Chan M.W.Y., et al. FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene. Cell. 2007;129:1275–1286. doi: 10.1016/j.cell.2007.04.034. PubMed DOI PMC
Wang L., Liu R., Li W., Chen C., Katoh H., Chen G.-Y., McNally B., Lin L., Zhou P., Zuo T., et al. Somatic Single-Hits Inactivate the X-Linked Tumor Suppressor FOXP3 in the Prostate. Cancer Cell. 2009;16:336–346. doi: 10.1016/j.ccr.2009.08.016. PubMed DOI PMC
Hinz S., Pagerols-Raluy L., Oberg H.-H., Ammerpohl O., Grüssel S., Sipos B., Grützmann R., Pilarsky C., Ungefroren H., Saeger H.-D., et al. Foxp3 Expression in Pancreatic Carcinoma Cells as a Novel Mechanism of Immune Evasion in Cancer. Cancer Res. 2007;67:8344–8350. doi: 10.1158/0008-5472.CAN-06-3304. PubMed DOI
Ebert L.M., Tan B.S., Browning J., Svobodova S., Russell S.E., Kirkpatrick N., Gedye C., Moss D., Ng S.P., MacGregor D., et al. The Regulatory T Cell-Associated Transcription Factor FoxP3 Is Expressed by Tumor Cells. Cancer Res. 2008;68:3001–3009. doi: 10.1158/0008-5472.CAN-07-5664. PubMed DOI
Shang B., Liu Y., Jiang S., Liu Y. Prognostic Value of Tumor-Infiltrating FoxP3+ Regulatory T Cells in Cancers: A Systematic Review and Meta-Analysis. Sci. Rep. 2015;5:15179. doi: 10.1038/srep15179. PubMed DOI PMC
Ma G.-F., Miao Q., Liu Y.-M., Gao H., Lian J.-J., Wang Y.-N., Zeng X.-Q., Luo T.-C., Ma L.-L., Shen Z.-B., et al. High FoxP3 Expression in Tumour Cells Predicts Better Survival in Gastric Cancer and Its Role in Tumour Microenvironment. Br. J. Cancer. 2014;110:1552–1560. doi: 10.1038/bjc.2014.47. PubMed DOI PMC
Hao Q., Zhang C., Gao Y., Wang S., Li J., Li M., Xue X., Li W., Zhang W., Zhang Y. FOXP3 Inhibits NF-ΚB Activity and Hence COX2 Expression in Gastric Cancer Cells. Cell. Signal. 2014;26:564–569. doi: 10.1016/j.cellsig.2013.11.030. PubMed DOI
Cioplea M., Nichita L., Georgescu D., Sticlaru L., Cioroianu A., Nedelcu R., Turcu G., Rauta A., Mogodici C., Zurac S., et al. FOXP3 in Melanoma with Regression: Between Tumoral Expression and Regulatory T Cell Upregulation. J. Immunol. Res. 2020;2020:5416843. doi: 10.1155/2020/5416843. PubMed DOI PMC
Yang S., Liu Y., Li M.-Y., Ng C.S.H., Yang S., Wang S., Zou C., Dong Y., Du J., Long X., et al. FOXP3 Promotes Tumor Growth and Metastasis by Activating Wnt/β-Catenin Signaling Pathway and EMT in Non-Small Cell Lung Cancer. Mol. Cancer. 2017;16:124. doi: 10.1186/s12943-017-0700-1. PubMed DOI PMC
Tan C.L., Kuchroo J.R., Sage P.T., Liang D., Francisco L.M., Buck J., Thaker Y.R., Zhang Q., McArdel S.L., Juneja V.R., et al. PD-1 Restraint of Regulatory T Cell Suppressive Activity Is Critical for Immune Tolerance. J. Exp. Med. 2020;218:e20182232. doi: 10.1084/jem.20182232. PubMed DOI PMC
Kamada T., Togashi Y., Tay C., Ha D., Sasaki A., Nakamura Y., Sato E., Fukuoka S., Tada Y., Tanaka A., et al. PD-1+ Regulatory T Cells Amplified by PD-1 Blockade Promote Hyperprogression of Cancer. Proc. Natl. Acad. Sci. USA. 2019;116:9999–10008. doi: 10.1073/pnas.1822001116. PubMed DOI PMC
Revenko A., Carnevalli L.S., Sinclair C., Johnson B., Peter A., Taylor M., Hettrick L., Chapman M., Klein S., Solanki A., et al. Direct Targeting of FOXP3 in Tregs with AZD8701, a Novel Antisense Oligonucleotide to Relieve Immunosuppression in Cancer. J. Immunother. Cancer. 2022;10:e003892. doi: 10.1136/jitc-2021-003892. PubMed DOI PMC
Selby M.J., Engelhardt J.J., Quigley M., Henning K.A., Chen T., Srinivasan M., Korman A.J. Anti-CTLA-4 Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T Cells. Cancer Immunol. Res. 2013;1:32–42. doi: 10.1158/2326-6066.CIR-13-0013. PubMed DOI
Hodi F.S., Butler M., Oble D.A., Seiden M.V., Haluska F.G., Kruse A., MacRae S., Nelson M., Canning C., Lowy I., et al. Immunologic and Clinical Effects of Antibody Blockade of Cytotoxic T Lymphocyte-Associated Antigen 4 in Previously Vaccinated Cancer Patients. Proc. Natl. Acad. Sci. USA. 2008;105:3005–3010. doi: 10.1073/pnas.0712237105. PubMed DOI PMC
Salmi S., Siiskonen H., Sironen R., Tyynelä-Korhonen K., Hirschovits-Gerz B., Valkonen M., Auvinen P., Pasonen-Seppänen S. The Number and Localization of CD68+ and CD163+ Macrophages in Different Stages of Cutaneous Melanoma. Melanoma Res. 2019;29:237–247. doi: 10.1097/CMR.0000000000000522. PubMed DOI PMC
Van Dalen F., van Stevendaal M., Fennemann F., Verdoes M., Ilina O. Molecular Repolarisation of Tumour-Associated Macrophages. Molecules. 2018;24:9. doi: 10.3390/molecules24010009. PubMed DOI PMC
Arlauckas S.P., Garris C.S., Kohler R.H., Kitaoka M., Cuccarese M.F., Yang K.S., Miller M.A., Carlson J.C., Freeman G.J., Anthony R.M., et al. In Vivo Imaging Reveals a Tumor-Associated Macrophage Mediated Resistance Pathway in Anti-PD-1 Therapy. Sci. Transl. Med. 2017;9:eaal3604. doi: 10.1126/scitranslmed.aal3604. PubMed DOI PMC
Gunnarsson U., Strigård K., Edin S., Gkekas I., Mustonen H., Kaprio T., Böckelman C., Hagström J., Palmqvist R., Haglund C. Association between Local Immune Cell Infiltration, Mismatch Repair Status and Systemic Inflammatory Response in Colorectal Cancer. J. Transl. Med. 2020;18:178. doi: 10.1186/s12967-020-02336-6. PubMed DOI PMC
Morrison C., Pabla S., Conroy J.M., Nesline M.K., Glenn S.T., Dressman D., Papanicolau-Sengos A., Burgher B., Andreas J., Giamo V., et al. Predicting Response to Checkpoint Inhibitors in Melanoma beyond PD-L1 and Mutational Burden. J. Immunother. Cancer. 2018;6:32. doi: 10.1186/s40425-018-0344-8. PubMed DOI PMC
Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., Schadendorf D., Dummer R., Smylie M., Rutkowski P., et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015;373:23–34. doi: 10.1056/NEJMoa1504030. PubMed DOI PMC
Yang J., Dong M., Shui Y., Zhang Y., Zhang Z., Mi Y., Zuo X., Jiang L., Liu K., Liu Z., et al. A Pooled Analysis of the Prognostic Value of PD-L1 in Melanoma: Evidence from 1062 Patients. Cancer Cell Int. 2020;20:96. doi: 10.1186/s12935-020-01187-x. PubMed DOI PMC
