Experimental and Numerical Analysis of the Residual Stresses in Seamed Pipe in Dependence on Welding and Metal Forming

. 2023 Mar 10 ; 16 (6) : . [epub] 20230310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36984136

Concerning the increasingly widespread utilization of the finite element method (FEM), the concept of the so-called virtual factory is also gaining ground, and not only in the engineering industry. This approach does not use numerical simulations of individual production technologies separately but treats the entire production process as a chain of interrelated technologies. Thus, the output data from one technology is taken as input data for the following technology. The resulting thermal and mechanical effects are then not only dealt with within one technology but always comprehensively within the production process. In the consideration of the loading and subsequent service lives of manufactured components, values of residual stresses are one of the very important characteristics. For these reasons, this paper deals with the effect of residual stresses' magnitude and distribution during the formation and the final springback of the seamed pipe end section with and without respect to the influence of the preceding welding. The resulting residual stress values from numerical simulations are subsequently compared with the actual values of residual stresses experimentally measured using X-ray diffraction.

Zobrazit více v PubMed

Kim N.-H., Sankar B.V., Kumar A.V. Introduction to Finite Element Analysis and Design. John Wiley & Sons; Hoboken, NJ, USA: 2018.

Reddy J. Introduction to the Finite Element Method. McGraw-Hill Education; New York, NY, USA: 2019.

Szabó B., Babuška I. Finite Element Analysis: Method, Verification and Validation. John Wiley & Sons; Hoboken, NJ, USA: 2021.

Nielsen C.V., Martins P.A.F. Metal Forming: Formability, Simulation, and Tool Design. Academic Press; Cambridge, MA, USA: 2021.

Comini G. Finite Element Anylysis in Heat Transfer: Basic Formulation & Linear Problems. CRC Press; Boca Raton, FL, USA: 2018.

Sravan K.K., Jose M.J. Application of Sysweld Software in Finding Weld Residual Stress: A Review. SSRN; Rochester, NY, USA: 2022.

Pandey C., Mahapatra M.M., Kumar P. A Comparative Study of Transverse Shrinkage Stresses and Residual Stresses in P91 Welded Pipe Including Plasticity Error. Arch. Civ. Mech. Eng. 2018;18:1000–1011. doi: 10.1016/j.acme.2018.02.007. DOI

Wu G., Luo J., Li L., Long Y., Zhang S., Wang Y., Zhang Y., Xie S. Control of Welding Residual Stress in Large Storage Tank by Finite Element Method. Metals. 2022;12:1502. doi: 10.3390/met12091502. DOI

Dai P., Wang Y., Li S., Lu S., Feng G., Deng D. FEM Analysis of Residual Stress Induced by Repair Welding in SUS304 Stainless Steel Pipe Butt-Welded Joint. J. Manuf. Process. 2020;58:975–983. doi: 10.1016/j.jmapro.2020.09.006. DOI

Taraphdar P.K., Kumar R., Pandey C., Mahapatra M.M. Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses. Met. Mater. Int. 2021;27:3478–3492. doi: 10.1007/s12540-020-00921-4. DOI

Giudice F., Sili A. A Theoretical Approach to the Residual Stress Assessment Based on Thermal Field Evaluation in Laser Beam Welding. Int. J. Adv. Manuf. Technol. 2022;123:2793–2808. doi: 10.1007/s00170-022-10247-7. DOI

Chen L., Mi G., Zhang X., Wang C. Numerical and Experimental Investigation on Microstructure and Residual Stress of Multi-Pass Hybrid Laser-Arc Welded 316L Steel. Mater. Des. 2019;168:107653. doi: 10.1016/j.matdes.2019.107653. DOI

Ramos H.M.E., Tavares S.M.O., de Castro P.M.S.T. Numerical Modelling of Welded T-Joint Configurations Using SYSWELD. Sci. Technol. Mater. 2018;30:6–15. doi: 10.1016/j.stmat.2018.08.002. DOI

Feng G., Wang Y., Luo W., Hu L., Deng D. Comparison of Welding Residual Stress and Deformation Induced by Local Vacuum Electron Beam Welding and Metal Active Gas Arc Welding in a Stainless Steel Thick-Plate Joint. J. Mater. Res. Technol. 2021;13:1967–1979. doi: 10.1016/j.jmrt.2021.05.105. DOI

Pavan A.R., Arivazhagan B., Vasudevan M., Sharma G.K. Numerical Simulation and Validation of Residual Stresses and Distortion in Type 316L(N) Stainless Steel Weld Joints Fabricated by Advanced Welding Techniques. CIRP J. Manuf. Sci. Technol. 2022;39:294–307. doi: 10.1016/j.cirpj.2022.08.010. DOI

Mokhtarishirazabad M., McMillan M., Vijayanand V.D., Simpson C., Agius D., Truman C., Knowles D., Mostafavi M. Predicting Residual Stress in a 316L Electron Beam Weld Joint Incorporating Plastic Properties Derived from a Crystal Plasticity Finite Element Model. Int. J. Press. Vessel. Pip. 2023;201:104868. doi: 10.1016/j.ijpvp.2022.104868. DOI

Gkatzogiannis S. Finite Element Simulation of Residual Stresses from Welding and High Frequency Hammer Peening. KIT Scientific Publishing; Karlsruhe, Germany: 2022.

Li S., Hu L., Dai P., Bi T., Deng D. Influence of the Groove Shape on Welding Residual Stresses in P92/SUS304 Dissimilar Metal Butt-Welded Joints. J. Manuf. Process. 2021;66:376–386. doi: 10.1016/j.jmapro.2021.04.030. DOI

Van Puymbroeck E., Nagy W., Schotte K., Ul-Abdin Z., De Backer H. Determination of Residual Welding Stresses in a Steel Bridge Component by Finite Element Modeling of the Incremental Hole-Drilling Method. Appl. Sci. 2019;9:536. doi: 10.3390/app9030536. DOI

Zhang H., Li L., Ma W., Luo Y., Li Z., Kuai H. Effects of Welding Residual Stresses on Fatigue Reliability Assessment of a PC Beam Bridge with Corrugated Steel Webs under Dynamic Vehicle Loading. Structures. 2022;45:1561–1572. doi: 10.1016/j.istruc.2022.09.094. DOI

Chiocca A., Frendo F., Aiello F., Bertini L. Influence of Residual Stresses on the Fatigue Life of Welded Joints. Numerical Simulation and Experimental Tests. Int. J. Fatigue. 2022;162:106901. doi: 10.1016/j.ijfatigue.2022.106901. DOI

Hemmesi K., Mallet P., Farajian M. Numerical Evaluation of Surface Welding Residual Stress Behavior under Multiaxial Mechanical Loading and Experimental Validations. Int. J. Mech. Sci. 2020;168:105127. doi: 10.1016/j.ijmecsci.2019.105127. DOI

Ren S., Li S., Wang Y., Deng D., Ma N. Finite Element Analysis of Residual Stress in 2.25Cr-1Mo Steel Pipe during Welding and Heat Treatment Process. J. Manuf. Process. 2019;47:110–118. doi: 10.1016/j.jmapro.2019.09.019. DOI

Smith M.C., Muránsky O., Xiong Q., Bouchard P.J., Mathew J., Austin C. Validated Prediction of Weld Residual Stresses in Austenitic Steel Pipe Girth Welds before and after Thermal Ageing, Part 1: Mock-up Manufacture, Residual Stress Measurements, and Materials Characterisation. Int. J. Press. Vessel. Pip. 2019;172:233–250. doi: 10.1016/j.ijpvp.2019.01.004. DOI

Ghafouri M., Ahola A., Ahn J., Björk T. Welding-Induced Stresses and Distortion in High-Strength Steel T-Joints: Numerical and Experimental Study. J. Constr. Steel Res. 2022;189:107088. doi: 10.1016/j.jcsr.2021.107088. DOI

Moslemi N., Abdi B., Gohari S., Sudin I., Redzuan N., Ayob A., Ahmed M., Rhee S., Burvill C. Influence of Welding Sequences on Induced Residual Stress and Distortion in Pipes. Constr. Build. Mater. 2022;342:127995. doi: 10.1016/j.conbuildmat.2022.127995. DOI

Lü N.C., Wang M.H., Hao G.D., Wang Y.T. Finite Element Analysis of Residual Welding Stresses and Deformation for a 5A06 Aluminum Alloy Plate. Strength Mater. 2020;52:532–538. doi: 10.1007/s11223-020-00204-8. DOI

García-García V., Mejía I., Reyes-Calderón F., Benito J.A., Cabrera J.M. FE Thermo-Mechanical Simulation of Welding Residual Stresses and Distortion in Ti-Containing TWIP Steel through GTAW Process. J. Manuf. Process. 2020;59:801–815. doi: 10.1016/j.jmapro.2020.09.042. DOI

Pavan A.R., Arivazhagan B., Sharma G.K., Kumar S.A., Mahadevan S., Vasudevan M. Influence of Hardening Models on the Estimation of Residual Stresses by Finite Element Modeling in Type 316LN Stainless Steel Weld Joints. J. Mater. Eng. Perform. 2022;31:6988–6997. doi: 10.1007/s11665-022-06654-2. DOI

Baruah S., Sarkar S., Singh I.V., Mishra B.K. A Computational Framework Based on FEA, ML and GA for Estimation of Welding Residual Stresses. Finite Elem. Anal. Des. 2022;205:103753. doi: 10.1016/j.finel.2022.103753. DOI

Yaghi A.H., Hyde T.H., Becker A.A., Sun W., Wen W., Hilson G., Simandjuntak S., Flewitt P.E.J., Pavier M.J., Smith D.J. Comparison of Measured and Modelled Residual Stresses in a Welded P91 Steel Pipe Undergoing Post Weld Heat Treatment. Int. J. Press. Vessel. Pip. 2020;181:104076. doi: 10.1016/j.ijpvp.2020.104076. DOI

Hashemzadeh M., Chen B.-Q., Guedes Soares C. Evaluation of Multi-Pass Welding-Induced Residual Stress Using Numerical and Experimental Approaches. Ships Offshore Struct. 2018;13:847–856. doi: 10.1080/17445302.2018.1470453. DOI

Zhang K., Dong W., Lu S. Finite Element and Experiment Analysis of Welding Residual Stress in S355J2 Steel Considering the Bainite Transformation. J. Manuf. Process. 2021;62:80–89. doi: 10.1016/j.jmapro.2020.12.029. DOI

Wang X., Guo E. Numerical Analysis and Verification of Residual Stress in T Joint of S355 Steel. Frat. Ed Integrità Strutt. 2020;14:25–32. doi: 10.3221/IGF-ESIS.52.03. DOI

Perić M., Nižetić S., Garašić I., Gubeljak N., Vuherer T., Tonković Z. Numerical Calculation and Experimental Measurement of Temperatures and Welding Residual Stresses in a Thick-Walled T-Joint Structure. J. Therm. Anal. Calorim. 2020;141:313–322. doi: 10.1007/s10973-019-09231-3. DOI

Derakhshan E.D., Yazdian N., Craft B., Smith S., Kovacevic R. Numerical Simulation and Experimental Validation of Residual Stress and Welding Distortion Induced by Laser-Based Welding Processes of Thin Structural Steel Plates in Butt Joint Configuration. Opt. Laser Technol. 2018;104:170–182. doi: 10.1016/j.optlastec.2018.02.026. DOI

Chen B.-Q., Hashemzadeh M., Guedes Soares C. Validation of Numerical Simulations with X-ray Diffraction Measurements of Residual Stress in Butt-Welded Steel Plates. Ships Offshore Struct. 2018;13:273–282. doi: 10.1080/17445302.2017.1368122. DOI

Yaping L., Weixin G. Research on X-ray Welding Image Defect Detection Based on Convolution Neural Network. J. Phys. Conf. Ser. 2019;1237:032005. doi: 10.1088/1742-6596/1237/3/032005. DOI

Kumar A., Kumar D.R., Gautam V. Prediction of Residual Stresses in Biaxial Stretching of Tailor Welded Blanks by Finite Element Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2019;651:012039. doi: 10.1088/1757-899X/651/1/012039. DOI

Svetlík J., Baron P., Dobránsky J., Kočiško M. Implementation of Computer System for Support of Technological Preparation of Production for Technologies of Surface Processing. Appl. Mech. Mater. 2014;613:418–425. doi: 10.4028/www.scientific.net/AMM.613.418. DOI

Xiao M., Hu Y.-F., Jin H., Chung K.-F., Nethercot D.A. Prediction of Residual Stresses in High-Strength S690 Cold-Formed Square Hollow Sections Using Integrated Numerical Simulations. Eng. Struct. 2022;253:113682. doi: 10.1016/j.engstruct.2021.113682. DOI

Yao Y., Quach W.-M., Young B. Simplified Models for Residual Stresses and Equivalent Plastic Strains in Cold-Formed Steel Elliptical Hollow Sections. Thin-Walled Struct. 2020;154:106835. doi: 10.1016/j.tws.2020.106835. DOI

Kumar A., Digavalli R.K., Gautam V., Krishnaswamy H. Characterization of Residual Stresses in Conventional Forming and Hydroforming of Tailor Welded Blanks. J. Mater. Eng. Perform. 2022;31:10171–10186. doi: 10.1007/s11665-022-07020-y. DOI

Hu Y.-F., Chung K.-F., Ban H., Nethercot D.A. Investigations into Residual Stresses in S690 Cold-Formed Circular Hollow Sections Due to Transverse Bending and Longitudinal Welding. Eng. Struct. 2020;219:110911. doi: 10.1016/j.engstruct.2020.110911. DOI

Dobránsky J., Pollák M. Structural Design and Material Cutting Using a Laser End Effector on a Robot Arm. TEM J. 2020;9:1455–1459.

Zhao J., Tang J., Zhou W., Jiang T., Liu H., Xing B. Numerical Modeling and Experimental Verification of Residual Stress Distribution Evolution of 12Cr2Ni4A Steel Generated by Shot Peening. Surf. Coat. Technol. 2022;430:127993. doi: 10.1016/j.surfcoat.2021.127993. DOI

Liu B., Villavicencio R., Guedes Soares C. Experimental and Numerical Analysis of Residual Stresses and Strains Induced during Cold Bending of Thick Steel Plates. Mar. Struct. 2018;57:121–132. doi: 10.1016/j.marstruc.2017.10.005. DOI

Díaz A., Cuesta I.I., Alegre J.M., de Jesus A.M.P., Manso J.M. Residual Stresses in Cold-Formed Steel Members: Review of Measurement Methods and Numerical Modelling. Thin-Walled Struct. 2021;159:107335. doi: 10.1016/j.tws.2020.107335. DOI

Lee W., Lee H., Bae J., Kim D. Optimization of Manufacturing Process for Exterior Quality of Commercial Vehicle by Multi-Physics Simulations. Multiscale Sci. Eng. 2020;2:114–126. doi: 10.1007/s42493-020-00039-0. DOI

Li Y., Shi Z., Lin J., Yang Y.-L., Saillard P., Said R. Effect of Machining-Induced Residual Stress on Springback of Creep Age Formed AA2050 Plates with Asymmetric Creep-Ageing Behaviour. Int. J. Mach. Tools Manuf. 2018;132:113–122. doi: 10.1016/j.ijmachtools.2018.05.003. DOI

Wang X., Meng Q., Hu W. Fatigue Life Prediction for Butt-Welded Joints Considering Weld-Induced Residual Stresses and Initial Damage, Relaxation of Residual Stress, and Elasto-Plastic Fatigue Damage. Fatigue Fract. Eng. Mater. Struct. 2019;42:1373–1386. doi: 10.1111/ffe.12993. DOI

Monin V.I., Lopes R.T., Turibus S.N., Payão Filho J.C., Assis J.T. de X-ray Diffraction Technique Applied to Study of Residual Stresses after Welding of Duplex Stainless Steel Plates. Mat. Res. 2014;17:64–69. doi: 10.1590/S1516-14392014005000047. DOI

Ahmed I.I., Adebisi J.A., Abdulkareem S., Sherry A.H. Investigation of Surface Residual Stress Profile on Martensitic Stainless Steel Weldment with X-ray Diffraction. J. King Saud Univ.-Eng. Sci. 2018;30:183–187. doi: 10.1016/j.jksues.2016.01.004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...