Characterisation of the antiviral RNA interference response to Toscana virus in sand fly cells

. 2023 Mar ; 19 (3) : e1011283. [epub] 20230330

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36996243

Grantová podpora
Wellcome Trust - United Kingdom
210462/Z/18/Z Wellcome Trust - United Kingdom
MC_UU_12014/12 Medical Research Council - United Kingdom
MC_UU_12014/8 Medical Research Council - United Kingdom

Odkazy

PubMed 36996243
PubMed Central PMC10112792
DOI 10.1371/journal.ppat.1011283
PII: PPATHOGENS-D-22-02163
Knihovny.cz E-zdroje

Toscana virus (TOSV) (Bunyavirales, Phenuiviridae, Phlebovirus, Toscana phlebovirus) and other related human pathogenic arboviruses are transmitted by phlebotomine sand flies. TOSV has been reported in nations bordering the Mediterranean Sea among other regions. Infection can result in febrile illness as well as meningitis and encephalitis. Understanding vector-arbovirus interactions is crucial to improving our knowledge of how arboviruses spread, and in this context, immune responses that control viral replication play a significant role. Extensive research has been conducted on mosquito vector immunity against arboviruses, with RNA interference (RNAi) and specifically the exogenous siRNA (exo-siRNA) pathway playing a critical role. However, the antiviral immunity of phlebotomine sand flies is less well understood. Here we were able to show that the exo-siRNA pathway is active in a Phlebotomus papatasi-derived cell line. Following TOSV infection, distinctive 21 nucleotide virus-derived small interfering RNAs (vsiRNAs) were detected. We also identified the exo-siRNA effector Ago2 in this cell line, and silencing its expression rendered the exo-siRNA pathway largely inactive. Thus, our data show that this pathway is active as an antiviral response against a sand fly transmitted bunyavirus, TOSV.

Zobrazit více v PubMed

Ayhan N, Charrel RN. An update on Toscana virus distribution, genetics, medical and diagnostic aspects. Clin Microbiol Infect. 2020;26(8):1017–23. Epub 2020/01/07. doi: 10.1016/j.cmi.2019.12.015 . PubMed DOI

Charrel RN, Bichaud L, de Lamballerie X. Emergence of Toscana virus in the mediterranean area. World J Virol. 2012;1(5):135–41. Epub 2013/11/01. doi: 10.5501/wjv.v1.i5.135 ; PubMed Central PMCID: PMC3782275. PubMed DOI PMC

Elliott RM, Brennan B. Emerging phleboviruses. Curr Opin Virol. 2014;5:50–7. Epub 2014/03/13. doi: 10.1016/j.coviro.2014.01.011 ; PubMed Central PMCID: PMC4031632. PubMed DOI PMC

Wuerth JD, Weber F. Phleboviruses and the Type I Interferon Response. Viruses. 2016;8(6). Epub 2016/06/25. doi: 10.3390/v8060174 ; PubMed Central PMCID: PMC4926194. PubMed DOI PMC

Woelfl F, Leger P, Oreshkova N, Pahmeier F, Windhaber S, Koch J, et al.. Novel Toscana Virus Reverse Genetics System Establishes NSs as an Antagonist of Type I Interferon Responses. Viruses. 2020;12(4). Epub 2020/04/09. doi: 10.3390/v12040400 ; PubMed Central PMCID: PMC7232479. PubMed DOI PMC

Alexander AJT, Confort MP, Desloire S, Dunlop JI, Kuchi S, Sreenu VB, et al.. Development of a Reverse Genetics System for Toscana Virus (Lineage A). Viruses. 2020;12(4). Epub 2020/04/11. doi: 10.3390/v12040411 ; PubMed Central PMCID: PMC7232365. PubMed DOI PMC

Blair CD, Olson KE. The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses. 2015;7(2):820–43. Epub 2015/02/19. doi: 10.3390/v7020820 ; PubMed Central PMCID: PMC4353918. PubMed DOI PMC

Olson KE, Blair CD. Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol. 2015;15:119–26. Epub 2015/12/03. doi: 10.1016/j.coviro.2015.10.001 ; PubMed Central PMCID: PMC4765169. PubMed DOI PMC

Samuel GH, Adelman ZN, Myles KM. Antiviral Immunity and Virus-Mediated Antagonism in Disease Vector Mosquitoes. Trends Microbiol. 2018;26(5):447–61. Epub 2018/02/06. doi: 10.1016/j.tim.2017.12.005 ; PubMed Central PMCID: PMC5910197. PubMed DOI PMC

Tikhe CV, Dimopoulos G. Mosquito antiviral immune pathways. Dev Comp Immunol. 2021;116:103964. Epub 2020/12/11. doi: 10.1016/j.dci.2020.103964 . PubMed DOI

Gestuveo RJ, Parry R, Dickson LB, Lequime S, Sreenu VB, Arnold MJ, et al.. Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathog. 2022;18(1):e1010202. Epub 2022/01/07. doi: 10.1371/journal.ppat.1010202 ; PubMed Central PMCID: PMC8769306. PubMed DOI PMC

Varjak M, Leggewie M, Schnettler E. The antiviral piRNA response in mosquitoes? J Gen Virol. 2018;99(12):1551–62. Epub 2018/10/30. doi: 10.1099/jgv.0.001157 . PubMed DOI

Dietrich I, Jansen S, Fall G, Lorenzen S, Rudolf M, Huber K, et al.. RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems. mSphere. 2017;2(3). Epub 2017/05/13. doi: 10.1128/mSphere.00090-17 ; PubMed Central PMCID: PMC5415632. PubMed DOI PMC

Leger P, Lara E, Jagla B, Sismeiro O, Mansuroglu Z, Coppee JY, et al.. Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol. 2013;87(3):1631–48. Epub 2012/11/24. doi: 10.1128/JVI.02795-12 ; PubMed Central PMCID: PMC3554164. PubMed DOI PMC

Pitaluga AN, Mason PW, Traub-Cseko YM. Non-specific antiviral response detected in RNA-treated cultured cells of the sandfly, Lutzomyia longipalpis. Dev Comp Immunol. 2008;32(3):191–7. Epub 2007/08/21. doi: 10.1016/j.dci.2007.06.008 . PubMed DOI

Martins-da-Silva A, Telleria EL, Batista M, Marchini FK, Traub-Cseko YM, Tempone AJ. Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response. Viruses. 2018;10(1). Epub 2018/01/19. doi: 10.3390/v10010043 ; PubMed Central PMCID: PMC5795456. PubMed DOI PMC

Ferreira FV, Aguiar E, Olmo RP, de Oliveira KPV, Silva EG, Sant’Anna MRV, et al.. The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis. PLoS Negl Trop Dis. 2018;12(6):e0006569. Epub 2018/06/05. doi: 10.1371/journal.pntd.0006569 ; PubMed Central PMCID: PMC6002125. PubMed DOI PMC

Rozo-Lopez P, Drolet BS, Londono-Renteria B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. Insects. 2018;9(4). Epub 2018/12/14. doi: 10.3390/insects9040190 ; PubMed Central PMCID: PMC6315612. PubMed DOI PMC

Hilton L, Moganeradj K, Zhang G, Chen YH, Randall RE, McCauley JW, et al.. The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol. 2006;80(23):11723–32. Epub 2006/09/15. doi: 10.1128/JVI.01145-06 ; PubMed Central PMCID: PMC1642611. PubMed DOI PMC

Mottram TJ, Li P, Dietrich I, Shi X, Brennan B, Varjak M, et al.. Mutational analysis of Rift Valley fever phlebovirus nucleocapsid protein indicates novel conserved, functional amino acids. PLoS Negl Trop Dis. 2017;11(12):e0006155. Epub 2017/12/22. doi: 10.1371/journal.pntd.0006155 ; PubMed Central PMCID: PMC5764413. PubMed DOI PMC

Tesh RB, Modi GB. Development of a continuous cell line from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae), and its susceptibility to infection with arboviruses. J Med Entomol. 1983;20(2):199–202. Epub 1983/03/30. doi: 10.1093/jmedent/20.2.199 . PubMed DOI

Vasilakis N, Widen S, Mayer SV, Seymour R, Wood TG, Popov V, et al.. Niakha virus: a novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal. Virology. 2013;444(1–2):80–9. Epub 2013/06/19. doi: 10.1016/j.virol.2013.05.035 ; PubMed Central PMCID: PMC3755043. PubMed DOI PMC

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al.. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. Epub 2011/05/17. doi: 10.1038/nbt.1883 ; PubMed Central PMCID: PMC3571712. PubMed DOI PMC

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. Epub 2013/07/13. doi: 10.1038/nprot.2013.084 ; PubMed Central PMCID: PMC3875132. PubMed DOI PMC

Petrella V, Aceto S, Musacchia F, Colonna V, Robinson M, Benes V, et al.. De novo assembly and sex-specific transcriptome profiling in the sand fly Phlebotomus perniciosus (Diptera, Phlebotominae), a major Old World vector of Leishmania infantum. BMC Genomics. 2015;16:847. Epub 2015/10/27. doi: 10.1186/s12864-015-2088-x ; PubMed Central PMCID: PMC4619268. PubMed DOI PMC

Varjak M, Dietrich I, Sreenu VB, Till BE, Merits A, Kohl A, et al.. Spindle-E Acts Antivirally Against Alphaviruses in Mosquito Cells. Viruses. 2018;10(2). Epub 2018/02/22. doi: 10.3390/v10020088 ; PubMed Central PMCID: PMC5850395. PubMed DOI PMC

Varjak M, Donald CL, Mottram TJ, Sreenu VB, Merits A, Maringer K, et al.. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Negl Trop Dis. 2017;11(10):e0006010. Epub 2017/10/19. doi: 10.1371/journal.pntd.0006010 ; PubMed Central PMCID: PMC5667879. PubMed DOI PMC

Anderson MA, Gross TL, Myles KM, Adelman ZN. Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti. Insect Mol Biol. 2010;19(4):441–9. Epub 2010/05/12. doi: 10.1111/j.1365-2583.2010.01005.x ; PubMed Central PMCID: PMC3605713. PubMed DOI PMC

Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E, et al.. Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. mSphere. 2017;2(3). Epub 2017/05/13. doi: 10.1128/mSphere.00144-17 ; PubMed Central PMCID: PMC5415634. PubMed DOI PMC

Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time. Trends Biotechnol. 2019;37(7):761–74. Epub 2019/01/19. doi: 10.1016/j.tibtech.2018.12.002 . PubMed DOI

Bembom O, Ivanek R. seqLogo: Sequence logos for DNA sequence alignments. R package version 1.62.0. 2022.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...