GWAS-Identified Variants for Obesity Do Not Influence the Risk of Developing Multiple Myeloma: A Population-Based Study and Meta-Analysis
Language English Country Switzerland Media electronic
Document type Meta-Analysis, Journal Article
Grant support
PI17/02256
Instituto de Salud Carlos III
PI20/01845
Instituto de Salud Carlos III
BMBF: CLIOMMICS [01ZX1309]
German Ministry of Education and Science
PY20/01282
PAIDI, Consejería de Salud y Familia de la Junta de Andalucía, Spain
PubMed
37047000
PubMed Central
PMC10094344
DOI
10.3390/ijms24076029
PII: ijms24076029
Knihovny.cz E-resources
- Keywords
- genetic variants, multiple myeloma, obesity, susceptibility,
- MeSH
- Genome-Wide Association Study * methods MeSH
- Genetic Predisposition to Disease MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Multiple Myeloma * genetics MeSH
- Obesity complications genetics MeSH
- Risk Factors MeSH
- Carrier Proteins MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Names of Substances
- POC5 protein, human MeSH Browser
- Carrier Proteins MeSH
Multiple myeloma (MM) is an incurable disease characterized by the presence of malignant plasma cells in the bone marrow that secrete specific monoclonal immunoglobulins into the blood. Obesity has been associated with the risk of developing solid and hematological cancers, but its role as a risk factor for MM needs to be further explored. Here, we evaluated whether 32 genome-wide association study (GWAS)-identified variants for obesity were associated with the risk of MM in 4189 German subjects from the German Multiple Myeloma Group (GMMG) cohort (2121 MM cases and 2068 controls) and 1293 Spanish subjects (206 MM cases and 1087 controls). Results were then validated through meta-analysis with data from the UKBiobank (554 MM cases and 402,714 controls) and FinnGen cohorts (914 MM cases and 248,695 controls). Finally, we evaluated the correlation of these single nucleotide polymorphisms (SNPs) with cQTL data, serum inflammatory proteins, steroid hormones, and absolute numbers of blood-derived cell populations (n = 520). The meta-analysis of the four European cohorts showed no effect of obesity-related variants on the risk of developing MM. We only found a very modest association of the POC5rs2112347G and ADCY3rs11676272G alleles with MM risk that did not remain significant after correction for multiple testing (per-allele OR = 1.08, p = 0.0083 and per-allele OR = 1.06, p = 0.046). No correlation between these SNPs and functional data was found, which confirms that obesity-related variants do not influence MM risk.
Centre for Individualised Infection Medicine 30625 Hannover Germany
Department of Biochemistry and Molecular Biology 1 University of Granada 18071 Granada Spain
Department of Biology University of Pisa 56126 Pisa Italy
Division of Molecular Genetic Epidemiology German Cancer Research Center 69120 Heidelberg Germany
Division of Pediatric Neurooncology German Cancer Research Center 69120 Heidelberg Germany
Genomic Epidemiology Group German Cancer Research Center 69120 Heidelberg Germany
Germany Division of Cancer Epidemiology German Cancer Research Centre 69120 Heidelberg Germany
Hematology Department Virgen de las Nieves University Hospital 18012 Granada Spain
See more in PubMed
Palumbo A., Anderson K. Multiple myeloma. N. Engl. J. Med. 2011;364:1046–1060. doi: 10.1056/NEJMra1011442. PubMed DOI
Rajkumar S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020;95:548–567. doi: 10.1002/ajh.25791. PubMed DOI
Barnidge D.R., Tschumper R.C., Theis J.D., Snyder M.R., Jelinek D.F., Katzmann J.A., Dispenzieri A., Murray D.L. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J. Proteome Res. 2014;13:1905–1910. doi: 10.1021/pr5000544. PubMed DOI
Basen-Engquist K., Chang M. Obesity and cancer risk: Recent review and evidence. Curr. Oncol. Rep. 2011;13:71–76. doi: 10.1007/s11912-010-0139-7. PubMed DOI PMC
Calle E.E., Rodriguez C., Walker-Thurmond K., Thun M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003;348:1625–1638. doi: 10.1056/NEJMoa021423. PubMed DOI
Maskarinec G., Erber E., Gill J., Cozen W., Kolonel L.N. Overweight and obesity at different times in life as risk factors for non-Hodgkin’s lymphoma: The multiethnic cohort. Cancer Epidemiol. Biomark. Prev. 2008;17:196–203. doi: 10.1158/1055-9965.EPI-07-0716. PubMed DOI
Chiu B.C., Soni L., Gapstur S.M., Fought A.J., Evens A.M., Weisenburger D.D. Obesity and risk of non-Hodgkin lymphoma (United States) Cancer Causes Control. 2007;18:677–685. doi: 10.1007/s10552-007-9013-9. PubMed DOI
Larsson S.C., Wolk A. Obesity and risk of non-Hodgkin’s lymphoma: A meta-analysis. Int. J. Cancer. 2007;121:1564–1570. doi: 10.1002/ijc.22762. PubMed DOI
Skibola C.F. Obesity, diet and risk of non-Hodgkin lymphoma. Cancer Epidemiol. Biomark. Prev. 2007;16:392–395. doi: 10.1158/1055-9965.EPI-06-1081. PubMed DOI PMC
Lichtman M.A. Obesity and the risk for a hematological malignancy: Leukemia, lymphoma, or myeloma. Oncologist. 2010;15:1083–1101. doi: 10.1634/theoncologist.2010-0206. PubMed DOI PMC
Strom S.S., Yamamura Y., Kantarijian H.M., Cortes-Franco J.E. Obesity, weight gain, and risk of chronic myeloid leukemia. Cancer Epidemiol. Biomark. Prev. 2009;18:1501–1506. doi: 10.1158/1055-9965.EPI-09-0028. PubMed DOI PMC
Hillers-Ziemer L.E., McMahon R.Q., Hietpas M., Paderta G., LeBeau J., McCready J., Arendt L.M. Obesity Promotes Cooperation of Cancer Stem-Like Cells and Macrophages to Enhance Mammary Tumor Angiogenesis. Cancers. 2020;12:502. doi: 10.3390/cancers12020502. PubMed DOI PMC
Ritter A., Kreis N.N., Hoock S.C., Solbach C., Louwen F., Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers. 2022;14:3908. doi: 10.3390/cancers14163908. PubMed DOI PMC
Went M., Sud A., Law P.J., Johnson D.C., Weinhold N., Forsti A., van Duin M., Mitchell J.S., Chen B., Kuiper R., et al. Assessing the effect of obesity-related traits on multiple myeloma using a Mendelian randomisation approach. Blood Cancer J. 2017;7:e573. doi: 10.1038/bcj.2017.48. PubMed DOI PMC
Cao S., Liu J., Song L., Ma X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 2005;174:3484–3492. doi: 10.4049/jimmunol.174.6.3484. PubMed DOI PMC
Trabanelli S., Ercolano G., Wyss T., Gomez-Cadena A., Falquet M., Cropp D., Imbratta C., Leblond M.M., Salvestrini V., Curti A., et al. c-Maf enforces cytokine production and promotes memory-like responses in mouse and human type 2 innate lymphoid cells. EMBO J. 2022;41:e109300. doi: 10.15252/embj.2021109300. PubMed DOI PMC
Kim T.H., Yang K., Kim M., Kim H.S., Kang J.L. Apoptosis inhibitor of macrophage (AIM) contributes to IL-10-induced anti-inflammatory response through inhibition of inflammasome activation. Cell Death Dis. 2021;12:19. doi: 10.1038/s41419-020-03332-w. PubMed DOI PMC
Gabrysova L., Alvarez-Martinez M., Luisier R., Cox L.S., Sodenkamp J., Hosking C., Perez-Mazliah D., Whicher C., Kannan Y., Potempa K., et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4(+) T cells. Nat. Immunol. 2018;19:497–507. doi: 10.1038/s41590-018-0083-5. PubMed DOI PMC
Weinhold N., Meissner T., Johnson D.C., Seckinger A., Moreaux J., Forsti A., Chen B., Nickel J., Chubb D., Rawstron A.C., et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells. Haematologica. 2015;100:e110–e113. doi: 10.3324/haematol.2014.118786. PubMed DOI PMC
Gagliano Taliun S.A., VandeHaar P., Boughton A.P., Welch R.P., Taliun D., Schmidt E.M., Zhou W., Nielsen J.B., Willer C.J., Lee S., et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat. Genet. 2020;52:550–552. doi: 10.1038/s41588-020-0622-5. PubMed DOI PMC
Sanchez-Maldonado J.M., Collado R., Cabrera-Serrano A.J., Ter Horst R., Galvez-Montosa F., Robles-Fernandez I., Arenas-Rodriguez V., Cano-Gutierrez B., Bakker O., Bravo-Fernandez M.I., et al. Type 2 Diabetes-Related Variants Influence the Risk of Developing Prostate Cancer: A Population-Based Case-Control Study and Meta-Analysis. Cancers. 2022;14:2376. doi: 10.3390/cancers14102376. PubMed DOI PMC
The International Myeloma Working Group Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br. J. Haematol. 2003;121:749–757. doi: 10.1046/j.1365-2141.2003.04355.x. PubMed DOI
Rajkumar S.V., Dimopoulos M.A., Palumbo A., Blade J., Merlini G., Mateos M.V., Kumar S., Hillengass J., Kastritis E., Richardson P., et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI
Sainz J., Frank B., da Silva Filho M.I., Hoffmeister M., Rudolph A., Butterbach K., Chang-Claude J., Brenner H., Hemminki K., Forsti A. GWAS-identified common variants for obesity are not associated with the risk of developing colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2014;23:1125–1128. doi: 10.1158/1055-9965.EPI-13-1354. PubMed DOI
Rios-Tamayo R., Lupianez C.B., Campa D., Hielscher T., Weinhold N., Martinez-Lopez J., Jerez A., Landi S., Jamroziak K., Dumontet C., et al. A common variant within the HNF1B gene is associated with overall survival of multiple myeloma patients: Results from the IMMEnSE consortium and meta-analysis. Oncotarget. 2016;7:59029–59048. doi: 10.18632/oncotarget.10665. PubMed DOI PMC
Gong J., Nishimura K.K., Fernandez-Rhodes L., Haessler J., Bien S., Graff M., Lim U., Lu Y., Gross M., Fornage M., et al. Trans-ethnic analysis of metabochip data identifies two new loci associated with BMI. Int. J. Obes. 2018;42:384–390. doi: 10.1038/ijo.2017.304. PubMed DOI PMC
Felix J.F., Bradfield J.P., Monnereau C., van der Valk R.J., Stergiakouli E., Chesi A., Gaillard R., Feenstra B., Thiering E., Kreiner-Moller E., et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet. 2016;25:389–403. doi: 10.1093/hmg/ddv472. PubMed DOI PMC
Stergiakouli E., Gaillard R., Tavare J.M., Balthasar N., Loos R.J., Taal H.R., Evans D.M., Rivadeneira F., St Pourcain B., Uitterlinden A.G., et al. Genome-wide association study of height-adjusted BMI in childhood identifies functional variant in ADCY3. Obesity (Silver Spring) 2014;22:2252–2259. doi: 10.1002/oby.20840. PubMed DOI PMC
Shungin D., Winkler T.W., Croteau-Chonka D.C., Ferreira T., Locke A.E., Magi R., Strawbridge R.J., Pers T.H., Fischer K., Justice A.E., et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–196. doi: 10.1038/nature14132. PubMed DOI PMC
Helgeland O., Vaudel M., Sole-Navais P., Flatley C., Juodakis J., Bacelis J., Koloen I.L., Knudsen G.P., Johansson B.B., Magnus P., et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat. Metab. 2022;4:344–358. doi: 10.1038/s42255-022-00549-1. PubMed DOI
Warrington N.M., Howe L.D., Paternoster L., Kaakinen M., Herrala S., Huikari V., Wu Y.Y., Kemp J.P., Timpson N.J., St Pourcain B., et al. A genome-wide association study of body mass index across early life and childhood. Int. J. Epidemiol. 2015;44:700–712. doi: 10.1093/ije/dyv077. PubMed DOI PMC
Graff M., Scott R.A., Justice A.E., Young K.L., Feitosa M.F., Barata L., Winkler T.W., Chu A.Y., Mahajan A., Hadley D., et al. Genome-wide physical activity interactions in adiposity—A meta-analysis of 200,452 adults. PLoS Genet. 2017;13:e1006528. doi: 10.1371/journal.pgen.1006528. PubMed DOI PMC
Pulit S.L., Stoneman C., Morris A.P., Wood A.R., Glastonbury C.A., Tyrrell J., Yengo L., Ferreira T., Marouli E., Ji Y., et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 2019;28:166–174. doi: 10.1093/hmg/ddy327. PubMed DOI PMC
Locke A.E., Kahali B., Berndt S.I., Justice A.E., Pers T.H., Day F.R., Powell C., Vedantam S., Buchkovich M.L., Yang J., et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. doi: 10.1038/nature14177. PubMed DOI PMC
Hoffmann T.J., Choquet H., Yin J., Banda Y., Kvale M.N., Glymour M., Schaefer C., Risch N., Jorgenson E. A Large Multiethnic Genome-Wide Association Study of Adult Body Mass Index Identifies Novel Loci. Genetics. 2018;210:499–515. doi: 10.1534/genetics.118.301479. PubMed DOI PMC
Winkler T.W., Justice A.E., Graff M., Barata L., Feitosa M.F., Chu S., Czajkowski J., Esko T., Fall T., Kilpelainen T.O., et al. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genet. 2015;11:e1005378. doi: 10.1371/journal.pgen.1005378. PubMed DOI PMC
Justice A.E., Winkler T.W., Feitosa M.F., Graff M., Fisher V.A., Young K., Barata L., Deng X., Czajkowski J., Hadley D., et al. Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat. Commun. 2017;8:14977. doi: 10.1038/ncomms14977. PubMed DOI PMC
Akiyama M., Okada Y., Kanai M., Takahashi A., Momozawa Y., Ikeda M., Iwata N., Ikegawa S., Hirata M., Matsuda K., et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 2017;49:1458–1467. doi: 10.1038/ng.3951. PubMed DOI
Karlsson T., Rask-Andersen M., Pan G., Hoglund J., Wadelius C., Ek W.E., Johansson A. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat. Med. 2019;25:1390–1395. doi: 10.1038/s41591-019-0563-7. PubMed DOI
Thorleifsson G., Walters G.B., Gudbjartsson D.F., Steinthorsdottir V., Sulem P., Helgadottir A., Styrkarsdottir U., Gretarsdottir S., Thorlacius S., Jonsdottir I., et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 2009;41:18–24. doi: 10.1038/ng.274. PubMed DOI
Zhu Z., Guo Y., Shi H., Liu C.L., Panganiban R.A., Chung W., O’Connor L.J., Himes B.E., Gazal S., Hasegawa K., et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 2020;145:537–549. doi: 10.1016/j.jaci.2019.09.035. PubMed DOI PMC
Turcot V., Lu Y., Highland H.M., Schurmann C., Justice A.E., Fine R.S., Bradfield J.P., Esko T., Giri A., Graff M., et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 2018;50:26–41. doi: 10.1038/s41588-017-0011-x. PubMed DOI PMC
Berndt S.I., Gustafsson S., Magi R., Ganna A., Wheeler E., Feitosa M.F., Justice A.E., Monda K.L., Croteau-Chonka D.C., Day F.R., et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 2013;45:501–512. doi: 10.1038/ng.2606. PubMed DOI PMC
Speliotes E.K., Willer C.J., Berndt S.I., Monda K.L., Thorleifsson G., Jackson A.U., Lango Allen H., Lindgren C.M., Luan J., Magi R., et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 2010;42:937–948. doi: 10.1038/ng.686. PubMed DOI PMC
Wood A.R., Tyrrell J., Beaumont R., Jones S.E., Tuke M.A., Ruth K.S., Consortium G., Yaghootkar H., Freathy R.M., Murray A., et al. Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia. 2016;59:1214–1221. doi: 10.1007/s00125-016-3908-5. PubMed DOI PMC
Heard-Costa N.L., Zillikens M.C., Monda K.L., Johansson A., Harris T.B., Fu M., Haritunians T., Feitosa M.F., Aspelund T., Eiriksdottir G., et al. NRXN3 is a novel locus for waist circumference: A genome-wide association study from the CHARGE Consortium. PLoS Genet. 2009;5:e1000539. doi: 10.1371/journal.pgen.1000539. PubMed DOI PMC
Fernandez-Rhodes L., Graff M., Buchanan V.L., Justice A.E., Highland H.M., Guo X., Zhu W., Chen H.H., Young K.L., Adhikari K., et al. Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits-The Hispanic/Latino Anthropometry Consortium. HGG Adv. 2022;3:100099. doi: 10.1016/j.xhgg.2022.100099. PubMed DOI PMC
Martin S., Cule M., Basty N., Tyrrell J., Beaumont R.N., Wood A.R., Frayling T.M., Sorokin E., Whitcher B., Liu Y., et al. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes. 2021;70:1843–1856. doi: 10.2337/db21-0129. PubMed DOI
Ng M.C.Y., Graff M., Lu Y., Justice A.E., Mudgal P., Liu C.T., Young K., Yanek L.R., Feitosa M.F., Wojczynski M.K., et al. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genet. 2017;13:e1006719. doi: 10.1371/journal.pgen.1006719. PubMed DOI PMC
Sakaue S., Kanai M., Tanigawa Y., Karjalainen J., Kurki M., Koshiba S., Narita A., Konuma T., Yamamoto K., Akiyama M., et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021;53:1415–1424. doi: 10.1038/s41588-021-00931-x. PubMed DOI
Willer C.J., Speliotes E.K., Loos R.J., Li S., Lindgren C.M., Heid I.M., Berndt S.I., Elliott A.L., Jackson A.U., Lamina C., et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2009;41:25–34. doi: 10.1038/ng.287. PubMed DOI PMC
Couto Alves A., De Silva N.M.G., Karhunen V., Sovio U., Das S., Taal H.R., Warrington N.M., Lewin A.M., Kaakinen M., Cousminer D.L., et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci. Adv. 2019;5:eaaw3095. doi: 10.1126/sciadv.aaw3095. PubMed DOI PMC
Loos R.J., Lindgren C.M., Li S., Wheeler E., Zhao J.H., Prokopenko I., Inouye M., Freathy R.M., Attwood A.P., Beckmann J.S., et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 2008;40:768–775. doi: 10.1038/ng.140. PubMed DOI PMC
Meyre D., Delplanque J., Chevre J.C., Lecoeur C., Lobbens S., Gallina S., Durand E., Vatin V., Degraeve F., Proenca C., et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 2009;41:157–159. doi: 10.1038/ng.301. PubMed DOI
Graff M., Ngwa J.S., Workalemahu T., Homuth G., Schipf S., Teumer A., Volzke H., Wallaschofski H., Abecasis G.R., Edward L., et al. Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum. Mol. Genet. 2013;22:3597–3607. doi: 10.1093/hmg/ddt205. PubMed DOI PMC
Lu Y., Day F.R., Gustafsson S., Buchkovich M.L., Na J., Bataille V., Cousminer D.L., Dastani Z., Drong A.W., Esko T., et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat. Commun. 2016;7:10495. doi: 10.1038/ncomms10495. PubMed DOI PMC
Monda K.L., Chen G.K., Taylor K.C., Palmer C., Edwards T.L., Lange L.A., Ng M.C., Adeyemo A.A., Allison M.A., Bielak L.F., et al. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat. Genet. 2013;45:690–696. doi: 10.1038/ng.2608. PubMed DOI PMC
Bradfield J.P., Vogelezang S., Felix J.F., Chesi A., Helgeland O., Horikoshi M., Karhunen V., Lowry E., Cousminer D.L., Ahluwalia T.S., et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum. Mol. Genet. 2019;28:3327–3338. doi: 10.1093/hmg/ddz161. PubMed DOI PMC
Ter Horst R., Jaeger M., Smeekens S.P., Oosting M., Swertz M.A., Li Y., Kumar V., Diavatopoulos D.A., Jansen A.F.M., Lemmers H., et al. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell. 2016;167:1111–1124.e1113. doi: 10.1016/j.cell.2016.10.018. PubMed DOI PMC
Li Y., Oosting M., Smeekens S.P., Jaeger M., Aguirre-Gamboa R., Le K.T.T., Deelen P., Ricano-Ponce I., Schoffelen T., Jansen A.F.M., et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell. 2016;167:1099–1110.e1014. doi: 10.1016/j.cell.2016.10.017. PubMed DOI
Orru V., Steri M., Sole G., Sidore C., Virdis F., Dei M., Lai S., Zoledziewska M., Busonero F., Mulas A., et al. Genetic variants regulating immune cell levels in health and disease. Cell. 2013;155:242–256. doi: 10.1016/j.cell.2013.08.041. PubMed DOI PMC
Aguirre-Gamboa R., Joosten I., Urbano P.C.M., van der Molen R.G., van Rijssen E., van Cranenbroek B., Oosting M., Smeekens S., Jaeger M., Zorro M., et al. Differential Effects of Environmental and Genetic Factors on T and B Cell Immune Traits. Cell Rep. 2016;17:2474–2487. doi: 10.1016/j.celrep.2016.10.053. PubMed DOI PMC