Clinical applicability of short form of Bruininks-Oseretsky Test of Motor Proficiency Second Edition in patients after treatment of acute lymphoblastic leukemia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37077337
PubMed Central
PMC10109462
DOI
10.3389/fped.2023.1071572
Knihovny.cz E-zdroje
- Klíčová slova
- Bruininks-Oseretsky Test of Motor Proficiency Second Edition, acute lymphoblastic leukemia, motor assessment, motor development, motor skills, standard score,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Acute lymphoblastic leukaemia (ALL) ranks among paediatrics' most common oncological malignancies. Monitoring motor performance levels associated with self-sufficiency in the everyday activities of ALL patients is extremely important during treatment. The motor development of children and adolescents with ALL is most often assessed using the Bruininks-Oseretsky Test of Motor Proficiency Second Edition (BOT-2) complete form (CF) with 53 items or the short form (SF) with 14 items. However, there is no evidence in research that BOT-2 CF and SF give comparable results in the population of patients with ALL. OBJECTIVE: This study aimed to determine the compatibility of motor proficiency levels achieved from BOT-2 SF and BOT-2 CF in ALL survivors. MATERIALS AND METHOD: The research sample consists of n = 37 participants (18 girls, 19 boys) aged 4-21 years (10.26, ± SD 3.9) after treatment for ALL. All participants passed BOT-2 CF and were at least 6 months and a maximum of 6 years from the last dose of vincristine (VCR). We used ANOVA with repeated measures, considering the sex, intra-class correlation (ICC) for uniformity between BOT-2 SF and BOT-2 CF scores and Receiving Operating Characteristic. RESULTS: BOT-2 SF and BOT-2 CF assess the same underlying construct, and BOT-2 SF and CF standard scores have good uniformity: ICC = 0.78 for boys and ICC = 0.76 for girls. However, results from ANOVA showed that the participants achieved a significantly lower standard score in SF (45.1 ± 7.9) compared to CF (49.1 ± 9.4) (p < 0.001; Hays ω 2 = 0.41). ALL patients performed the worst in Strength and Agility. According to the ROC analysis, BOT-2 SF obtains acceptable sensitivity (72.3%) and high specificity (91.9%) with high accuracy of 86.1%, and the fair value of the Area Under the Curve (AUC) = 0.734 CI95% (0.47-0.88) in comparison to BOT-2 CF. CONCLUSIONS: To reduce the burden on ALL patients and their families, we recommend using BOT-2 SF instead of BOT-2 CF as a useful screening tool. BOT-SF can replicate motor proficiency with as high probability as BOT-2 CF but systematically underestimates motor proficiency.
Zobrazit více v PubMed
Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children's Oncology group. J Clin Oncol. (2012) 30(14):1663–9. 10.1200/JCO.2011.37.8018 PubMed DOI PMC
Yildiz Kabak V, Ekinci Y, Atasavun Uysal S, Cetin M, Duger T. Motor and basic cognitive functions in children with acute lymphoblastic leukemia undergoing induction or consolidation chemotherapy. Percept Mot Skills. (2021) 128(3):1091–106. 10.1177/00315125211002065 PubMed DOI
Folber F, Doubek M. Advances in treatment of acute lymphoblastic leukemia in adults. Onkologie. (2013) 7(3):113–6.
Margolin JF. Acute lymphoblastic leukemia. Principle and Practice of Pediatric Oncology. (1997):316–367.
Starý J. Akutní leukemie u dětí. Onkologie. (2010) 4(2):120–4.
Kaste SC, Rai SN, Fleming K, McCammon EA, Tylavsky FA, Danish RK, et al. Changes in bone mineral density in survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. (2006) 46(1):77–87. 10.1002/pbc.20553 PubMed DOI
Mäkitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies LR, Jahnukainen K. Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. Eur J Endocrinol. (2013) 168(2):281–8. 10.1530/EJE-12-0702 PubMed DOI
Onciu M. Acute lymphoblastic leukemia. Hematol Oncol Clin North Am. (2009) 23(4):655–74. 10.1016/j.hoc.2009.04.009 PubMed DOI
De Luca CR, McCarthy M, Galvin J, Green JL, Murphy A, Knight S, et al. Gross and fine motor skills in children treated for acute lymphoblastic leukaemia. Dev Neurorehabil. (2013) 16(3):180–7. 10.3109/17518423.2013.771221 PubMed DOI
Ratei R, Basso G, Dworzak M, Gaipa G, Veltroni M, Rhein P, et al. Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: predictive impact of early blast reduction on the remission status after induction. Leukemia. (2009) 23(3):528–34. 10.1038/leu.2008.324 PubMed DOI
Schrappe M. International Collaborative Treatment Protocol For Children And Adolescents With Acute Lymphoblastic Leukemia. clinicaltrials.gov; 2020 October (citated 19. April 2022). Report No.: NCT01117441. Available at: https://clinicaltrials.gov/ct2/show/NCT01117441
Joyce ED, Nolan VG, Ness KK, Ferry RJ, Jr, Robison LL, Pui CH, et al. Association of muscle strength and bone mineral density in adult survivors of childhood acute lymphoblastic leukemia. Arch Phys Med Rehabil. (2011) 92(6):873–9. 10.1016/j.apmr.2010.12.039 PubMed DOI PMC
San Juan AF, Fleck SJ, Chamorro-Vina C, Maté-Muñoz JL, Moral S, Garcia-Castro J, et al. Early-phase adaptations to intrahospital training in strength and functional mobility of children with leukemia. J Strength & Cond Res. (2007) 21(1):173–7. 10.1519/00124278-200702000-00031 PubMed DOI
Perondi MB, Gualano B, Artioli GG, de Salles Painelli V, Filho VO, Netto G, et al. Effects of a combined aerobic and strength training program in youth patients with acute lymphoblastic leukemia. J Sports Sci Med. (2012) 11(3):387–92. PubMed PMC
White J, Flohr JA, Winter SS, Vener J, Feinauer LR, Ransdell LB. Potential benefits of physical activity for children with acute lymphoblastic leukaemia. Pediatr Rehabil. (2005) 8(1):53–8. 10.1080/13638490410001727428 PubMed DOI
Le Meignen M, Auquier P, Barlogis V, Sirvent N, Contet A, Simeoni MC, et al. Bone mineral density in adult survivors of childhood acute leukemia: impact of hematopoietic stem cell transplantation and other treatment modalities. Blood, the J Am Soci Hematol. (2011) 118(6):1481–9. PubMed
Maniadaki I, Stiakaki E, Germanakis I, Kalmanti M. Evaluation of bone mineral density at different phases of therapy of childhood all. Pediatr Hematol Oncol. (2006) 23(1):11–8. 10.1080/08880010500313272 PubMed DOI
Ness KK, Kaste SC, Zhu L, Pui CH, Jeha S, Nathan PC, et al. Skeletal, neuromuscular and fitness impairments among children with newly diagnosed acute lymphoblastic leukemia. Leuk Lymphoma. (2015) 56(4):1004–11. 10.3109/10428194.2014.944519 PubMed DOI PMC
Janiszewski PM, Oeffinger KC, Church TS, Dunn AL, Eshelman DA, Victor RG, et al. Abdominal obesity, liver fat, and muscle composition in survivors of childhood acute lymphoblastic leukemia. J Clin Endocrinol Metab. (2007) 92(10):3816–21. 10.1210/jc.2006-2178 PubMed DOI
Ness KK, Baker KS, Dengel DR, Youngren N, Sibley S, Mertens AC, et al. Body composition, muscle strength deficits and mobility limitations in adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. (2007) 49(7):975–81. 10.1002/pbc.21091 PubMed DOI
Wuang YP, Lin YH, Su CY. Rasch analysis of the bruininks–oseretsky test of motor proficiency-in intellectual disabilities. Res Dev Disabil. (2009) 30(6):1132–44. 10.1016/j.ridd.2009.03.003 PubMed DOI
Hanna S, Elshennawy S, El-Ayadi M, Abdelazeim F. Investigating fine motor deficits during maintenance therapy in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. (2020) 67(7):e28385. 10.1002/pbc.28385 PubMed DOI
Ramchandren S, Leonard M, Mody RJ, Donohue JE, Moyer J, Hutchinson R, et al. Peripheral neuropathy in survivors of childhood acute lymphoblastic leukemia. J Peripher Nerv Syst. (2009) 14(3):184–9. 10.1111/j.1529-8027.2009.00230.x PubMed DOI PMC
Montgomery PC, Connolly BH. Norm-referenced and criterion-referenced tests: use in pediatrics and application to task analysis of motor skill. Phys Ther. (1987) 67(12):1873–6. 10.1093/ptj/67.12.1873 PubMed DOI
Wang HY, Long IM, Liu MF. Relationships between task-oriented postural control and motor ability in children and adolescents with down syndrome. Res Dev Disabil. (2012) 33(6):1792–8. 10.1016/j.ridd.2012.05.002 PubMed DOI
Brahler CJ, Donahoe-Fillmore B, Mrowzinski S, Aebker S, Kreill M. Numerous test items in the complete and short forms of the BOT-2 do not contribute substantially to motor performance assessments in typically developing children six to ten years old. J Occup Ther Sch & Early Interv. (2012) 5(1):73–84. 10.1080/19411243.2012.674746 DOI
Carmosino K, Grzeszczak A, McMurray K, Olivo A, Slutz B, Zoll B, et al. Test items in the complete and short forms of the BOT-2 that contribute substantially to motor performance assessments in typically developing children 6-10 years of age. J Stud Phys Ther Res. (2014) 7(2):31–43.
Radanović D, Đorđević D, Stanković M, Pekas D, Bogataj Š, Trajkovic N. Test of motor proficiency second edition (BOT-2) short form: a systematic review of studies conducted in healthy children. Children. (2021) 8(9):787. 10.3390/children8090787 PubMed DOI PMC
Bruininks RH, Bruininks BD. Bruininks-Oseretsky test of motor proficiency. Minnesota: AGS Publishing; (2005).
Bruininks RH, Bruininks BD. Bruininks–oseretsky test of motor proficiency–manual. Circle pines, Minnesota, USA: American Guidance Service; (1978).
Jírovec J, Musálek M, Mess F. Test of motor proficiency second edition (BOT-2): compatibility of the complete and short form and its usefulness for middle-age school children. Front Pediatr. (2019) 7:153. 10.3389/fped.2019.00153 PubMed DOI PMC
Wuang YP, Su CY. Reliability and responsiveness of the bruininks–oseretsky test of motor proficiency-in children with intellectual disability. Res Dev Disabil. (2009) 30(5):847–55. 10.1016/j.ridd.2008.12.002 PubMed DOI
Jirovec J, Holický J. Comparison of complete and short forms of the bruininks-Oseretsky test of motor proficiency, second edition (BOT-2) in middle age school children. Česká Kinantropologie. (2017) 21(1–2):60–8.
Brown T. Structural validity of the bruininks-oseretsky test of motor proficiency–second edition brief form (BOT-2-BF). Res Dev Disabil. (2019) 85:92–103. 10.1016/j.ridd.2018.11.010 PubMed DOI
Mancini V, Rudaizky D, Howlett S, Elizabeth-Price J, Chen W. Movement difficulties in children with ADHD: comparing the long-and short-form Bruininks–oseretsky test of motor proficiency—second edition (BOT-2). Aust Occup Ther J. (2020) 67(2):153–61. 10.1111/1440-1630.12641 PubMed DOI
Cairney J, Hay J, Veldhuizen S, Missiuna C, Faught BE. Comparing probable case identification of developmental coordination disorder using the short form of the bruininks-Oseretsky Test of motor proficiency and the movement ABC. Child Care Health Dev. (2009) 35(3):402–8. 10.1111/j.1365-2214.2009.00957.x PubMed DOI
Nocera VG, Wood AP, Wozencroft AJ, Coe DP. The test–retest reliability of the bruininks–oseretsky test of motor proficiency-short form in youth with down syndrome—a pilot study. Int J Environ Res Public Health. (2021) 18(10):5367. 10.3390/ijerph18105367 PubMed DOI PMC
Yeh KK, Liu WY, Yang ML, Liu CH, Lien HY, Chung CY. Sufficiency of the BOT-2 short form to screen motor competency in preschool children with strabismus. PloS one. (2021) 16(12):e0261549. PubMed PMC
Deitz JC, Kartin D, Kopp K. Review of the bruininks-oseretsky test of motor proficiency, (BOT-2). Phys Occup Ther Pediatr. (2007) 27(4):87–102. 10.1080/J006v27n04_06 PubMed DOI
Ito PK. 7 Robustness of ANOVA and MANOVA test procedures. Handb Stat. (1980) 1:199–236. 10.1016/S0169-7161(80)01009-7 DOI
Harwell MR, Rubinstein EN, Hayes WS, Olds CC. Summarizing monte carlo results in methodological research: the one-and two-factor fixed effects ANOVA cases. J Educ Stat. (1992) 17(4):315–39. 10.3102/10769986017004315 DOI
Grissom RJ, Kim JJ. Effect sizes for research: Univariate and multivariate applications. New York: Routledge; (2012).
Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ: Br Med J. (1994) 309(6948):188. 10.1136/bmj.309.6948.188 PubMed DOI PMC
Power M, Fell G, Wright M. Principles for high-quality, high-value testing. BMJ: Br Med J Evi-Based Med. (2013) 18(1):5–10. 10.1136/eb-2012-100645 PubMed DOI PMC
Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. (2010) 5(9):1315–6. 10.1097/JTO.0b013e3181ec173d PubMed DOI
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. (2016) 15(2):155–63. 10.1016/j.jcm.2016.02.012 PubMed DOI PMC
Lane S, Raymond MR, Haladyna TM. Handbook of test development. Vol. 2. NY: Routledge New York; (2016).
McDonald RP. Test theory: A unified treatment. New Jersey: Psychology Press; (2013).
Bardid F, Utesch T, Lenoir M. Investigating the construct of motor competence in middle childhood using the BOT-2 Short form: an item response theory perspective. Scand J Med Sci Sports. (2019) 29(12):1980–7. 10.1111/sms.13527 PubMed DOI
Reinders-Messelink HA, van Weerden TW, Fock JM, Gidding CE, Vingerhoets HM, Schoemaker MM, et al. Mild axonal neuropathy of children during treatment for acute lymphoblastic leukaemia. Eur J Paediatr Neurol. (2000) 4(5):225–33. 10.1053/ejpn.1999.0310 PubMed DOI
Freude G, Jakob O, Martus P, Rose U, Seibt R. Predictors of the discrepancy between calendar and biological age. Occup Med (Chic Ill). (2010) 60(1):21–8. 10.1093/occmed/kqp113 PubMed DOI
Hagtvet KA, Benson J. The motive to avoid failure and test anxiety responses: empirical support for integration of two research traditions. Anxiety Stress Coping. (1997) 10(1):35–57. 10.1080/10615809708249294 DOI
Nama N, Barker MK, Kwan C, Sabarre C, Solimano V, Rankin A, et al. Vincristine-induced peripheral neurotoxicity: a prospective cohort. Pediatr Hematol Oncol. (2020) 37(1):15–28. 10.1080/08880018.2019.1677832 PubMed DOI
Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Champaign: Human kinetics; (2004).
Bogin B. Patterns of human growth (vol. 88). Cambridge: Cambridge University Press; (2020).