Zn and Co ferrite nanoparticles: towards the applications of sensing and adsorption studies
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
37101211
DOI
10.1007/s11356-023-27201-z
PII: 10.1007/s11356-023-27201-z
Knihovny.cz E-resources
- Keywords
- Adsorption studies, Chemical vapor sensor, Coprecipitation, Nano ferrites, Transition-metal, Water analysis,
- MeSH
- Adsorption MeSH
- Ions MeSH
- Cobalt * chemistry MeSH
- Metal Nanoparticles * chemistry MeSH
- Zinc chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- cobalt ferrite MeSH Browser
- ferrite MeSH Browser
- Ions MeSH
- Cobalt * MeSH
- Zinc MeSH
An important deliberation of this current work is the impending applications of bivalent transition metals doped with nano ferrites and to study their emerging properties of magnetically active ferrites, which constitute oxides of iron (different conformers most demanding γ-Fe2O3) and transition metal complexes of bivalent metal oxides like cobalt (Co(II)) and magnesium (Mg(II)). Fe3+ ions occupy tetrahedral sites; the rest of Fe3+ and the Co2+ ions occupy octahedral sites. For the synthesis, a self-propagating method of combustion at lower temperature was used. Zinc and cobalt nano ferrites are synthesized from the chemical coprecipitation method of 20 to 90 nm in average size, characterized thoroughly employing FTIR and PXRD and surface morphology studied using SEM. These results explain the existence of ferrite nanoparticles in cubic spinel. Magnetically active metal oxide nanoparticles are now commonly employed in main studies of sensing, absorption, and other properties. All studies showed the interesting results.
Department of Chemistry and Research Center NMKRV College for Women Jayanagar Bangalore 560011 India
Department of Chemistry KLE's P C Jabin Science College Hubballi 580031 India
See more in PubMed
Afzal RA, Afrin R, Manzoor U et al (2015) Diameter control of carbon nanotubes using argon-acetylene mixture and their application as IR sensor. Mod Phys Lett B 29(23):1550131 https://doi.org/10.1142/S0217984915501316
Ahmad I, Shah SM, Zafar MN et al (2021) Fabrication of highly resistive La–Zn co-substituted spinel strontium nanoferrites for high frequency devices applications. Mater Chem Phys 259:124031. https://doi.org/10.1016/j.matchemphys.2020.124031 DOI
Ansari F, Sobhani A, Salavati-Niasari M (2016a) PbTiO3/PbFe12O19 nanocomposites: green synthesis through an eco-friendly approach. Compos Part B Eng 85:170–175. https://doi.org/10.1016/j.compositesb.2015.09.027 DOI
Ansari F, Sobhani A, Salavati-Niasari M (2016b) Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method. J Magn Magn Mater 410:27–33. https://doi.org/10.1016/j.jmmm.2016.03.014 DOI
Ansari F, Sobhani A, Salavati-Niasari M (2014) Sol–gel auto-combustion synthesis of PbFe12O19 using maltose as a novel reductant. RSC Adv 4:63946–63950. https://doi.org/10.1039/C4RA11688G DOI
Ansari F, Sobhani A, Salavati-Niasari M (2016c) Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol–gel auto-combustion process. J Magn Magn Mater 401:362–369. https://doi.org/10.1016/j.jmmm.2015.10.049 DOI
Aseri A, Garg SK, Nayak A et al (2015) Magnetic nanoparticles: magnetic nano-technology using biomedical applications and future prospects. Int J Pharm Sci Rev Res 31:119–131
Aslibeiki B, Hassanzadeh G (2019) Study of the effect of particle size on the specific absorption rate of cobalt ferrite nanoparticles in a radio frequency magnetic field. Iran J Phys Res 19:303–317. https://doi.org/10.29252/ijpr.19.2.303 DOI
Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131–10176. https://doi.org/10.1021/cr400625j DOI
Benedé JL, Chisvert A, Giokas DL, Salvador A (2014) Development of stir bar sorptive-dispersive microextraction mediated by magnetic nanoparticles and its analytical application to the determination of hydrophobic organic compounds in aqueous media. J Chromatogr A 1362:25–33. https://doi.org/10.1016/j.chroma.2014.08.024 DOI
Buledi JA, Amin S, Haider SI et al (2020) A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07865-7
Byun J, Patel HA, Yavuz CT (2014) Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic. J Nanopart Res 16. https://doi.org/10.1007/s11051-014-2787-2
Caetano PMA, Simoes NM, Pinto PS et al (2020) Application of nickel ferrite nanoparticles in adsorption of amoxicillin antibiotic. J Braz Chem Soc 31:2452–2461. https://doi.org/10.21577/0103-5053.20200120 DOI
StG C, Stoyanova M, Georgieva M (2001) Low-temperature iron-modified cobalt oxide system: part 2. Catalytic oxidation of phenol in aqueous phase. Appl Catal A Gen 208:243–249. https://doi.org/10.1016/S0926-860X(00)00710-9 DOI
Darshane SL, Suryavanshi SS, Mulla IS (2009) Nanostructured nickel ferrite: a liquid petroleum gas sensor. Ceram Int 35:1793–1797. https://doi.org/10.1016/j.ceramint.2008.10.013 DOI
Das S, Jayaraman V (2014) SnO2: A comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255. https://doi.org/10.1016/j.pmatsci.2014.06.003 DOI
Davarpanah AM, Rahdar A, Dastnae MA et al (2019) (1-x)BaFe12O19/ xCoFe2O4 hard/soft magnetic nanocomposites: synthesis, physical characterization, and antibacterial activities study. J Mol Struct 1175:445–449. https://doi.org/10.1016/j.molstruc.2018.07.092 DOI
Deshkulkarni B, Viannie LR, Ganachari SV et al (2018) Humidity sensing using polyaniline/polyvinyl alcohol nanocomposite blend. IOP Conf Ser Mater Sci Eng 376:012063. https://doi.org/10.1088/1757-899X/376/1/012063 DOI
Dinesha BL, Hiregoudar S, Nidoni U et al (2022) Adsorption modelling and fixed-bed column study on milk processing industry wastewater treatment using chitosan zinc-oxide nano-adsorbent–coated sand filter bed. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-24873-x
Dos Santos AL, Marçal RLSB, De Campos JB et al (2018) Magnetic filter produced by ZnFe2O4 nanoparticles using freeze casting. J Mater Res Technol 7:350–355. https://doi.org/10.1016/j.jmrt.2018.04.012 DOI
Douani R, Lamrani N, Oughanem M et al (2020) Improvement of humidity sensing performance of BiFeO3 nanoparticles-based sensor by the addition of carbon fibers. Sensors Actuators A Phys 307. https://doi.org/10.1016/j.sna.2020.111981
Ganachari SV, Banapurmath NR, Salimath B et al (2019a) Synthesis techniques for preparation of nanomaterials. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of Ecomaterials. Springer International Publishing, Cham, pp 83–103 DOI
Ganachari SV, Hublikar L, Yaradoddi JS, Math SS (2019b) Metal oxide nanomaterials for environmental applications. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of Ecomaterials. Springer International Publishing, Cham, pp 2357–2368 DOI
Ganachari SV, Yaradoddi JS, Somappa SB et al (2019c) Green nanotechnology for biomedical, food, and agricultural applications. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of Ecomaterials. Springer International Publishing, Cham, pp 2681–2698 DOI
Godbole R, Rao P, Bhagwat S (2017) Magnesium ferrite nanoparticles: a rapid gas sensor from alcohol. Mater Res Express 4. https://doi.org/10.1088/2053-1591/aa5ec7
Goodarz Naseri M, Saion EB, Abbastabar Ahangar H et al (2010) Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J Nanomater 2010:e907686. https://doi.org/10.1155/2010/907686 DOI
Gupta S, Divakaran AM, Awasthi K, Kumar M (2022) CO2 gas sensing properties of Na3BiO4-Bi2O3 mixed oxide nanostructures. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21506-1
Hadela A, Lakić M, Potočnik M et al (2020) Novel reusable functionalized magnetic cobalt ferrite nanoparticles as oil adsorbents. Adsorpt Sci Technol 38:168–190. https://doi.org/10.1177/0263617420922014 DOI
Haija MA, Basina G, Banat F, Ayesh AI (2019) Adsorption and gas sensing properties of CuFe2O4 nanoparticles. Mater Sci Pol. https://doi.org/10.2478/msp-2019-0020
Hasanein P, Rahdar A, Esmaeilzadeh Bahabadi S et al (2021) Manganese/cerium nanoferrites: synthesis and toxicological effects by intraperitoneal administration in rats. Inorg Chem Commun 125:108433. https://doi.org/10.1016/j.inoche.2020.108433 DOI
Hong Y, Liao W, Yan Z et al (2020) Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. J Chem 2020:e9010348. https://doi.org/10.1155/2020/9010348 DOI
Hublikar L, Ganachari SV, Yaradoddi JS (2019) Green energy generation from microbial fuel cells. In: Martínez LMT, Kharissova OV, Kharisov BI (eds) Handbook of Ecomaterials. Springer International Publishing, Cham, pp 1207–1220 DOI
Jarrah A, Farhadi S (2020) Preparation and characterization of novel polyoxometalate/CoFe2O4/metal-organic framework magnetic core-shell nanocomposites for the rapid removal of organic dyes from water. RSC Adv 10:39881–39893. https://doi.org/10.1039/d0ra04603e DOI
Kanth PC, Trivedi MU, Patel K et al (2021) Cucurbituril-functionalized nanocomposite as a promising industrial adsorbent for rapid cationic dye removal. ACS Omega 6:3024–3036. https://doi.org/10.1021/acsomega.0c05400 DOI
Kariim I, Abdulkareem AS, Tijani JO, Abubakre OK (2020) Development of MWCNTs/TiO2 nanoadsorbent for simultaneous removal of phenol and cyanide from refinery wastewater. Sci Afr 10. https://doi.org/10.1016/j.sciaf.2020.e00593
Keerthana SP, Yuvakkumar R, Ravi G et al (2022) Synthesis of pure and lanthanum-doped barium ferrite nanoparticles for efficient removal of toxic pollutants. J Hazard Mater 424:127604. https://doi.org/10.1016/j.jhazmat.2021.127604 DOI
Khoso WA, Haleem N, Baig MA, Jamal Y (2021) Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s). Sci Rep 11. https://doi.org/10.1038/s41598-021-83363-1
Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7:2833–2881. https://doi.org/10.3390/ma7042833 DOI
Koutavarapu R, Reddy CV, Syed K et al (2022) Novel Z-scheme binary zinc tungsten oxide/nickel ferrite nanohybrids for photocatalytic reduction of chromium (Cr (VI)), photoelectrochemical water splitting and degradation of toxic organic pollutants. J Hazard Mater 423:127044. https://doi.org/10.1016/j.jhazmat.2021.127044 DOI
Li B, Zhang X, Huo L et al (2022) Controllable construction of ZnFe2O4-based micro-nano heterostructure for the rapid detection and degradation of VOCs. J Hazard Mater 435:129005. https://doi.org/10.1016/j.jhazmat.2022.129005 DOI
Li Y, Du K, Hu H, et al (2015) Experimental investigation on enhancement of ammonia-water falling film generation by adding ZnFe2O4 nano-particles. pp 1731–1739
Lingamurthy DB, Hiregoudar S, Nidoni U et al (2023) Adsorptive removal of organic pollutants from milk-processing industry effluents through chitosan-titanium dioxide nanoadsorbent-coated sand. Environ Sci Pollut Res 30:24101–24119. https://doi.org/10.1007/s11356-022-23854-4 DOI
Maleki A, Hajizadeh Z, Salehi P (2019) Mesoporous halloysite nanotubes modified by CuFe 2 O 4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci Rep 9. https://doi.org/10.1038/s41598-019-42126-9
Manikandan V, Sikarwar S, Yadav BC et al (2021) Ultra-sensitive behaviour of ruthenium-doped nickel ferrite thin film humidity sensor. J Exp Nanosci 16:44–51. https://doi.org/10.1080/17458080.2021.1873385 DOI
Manova E, Tsoncheva T, Paneva D et al (2004) Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl Catal A Gen 277:119–127. https://doi.org/10.1016/j.apcata.2004.09.002 DOI
Mesbah M, Hamedshahraki S, Ahmadi S et al (2020) Hydrothermal synthesis of LaFeO3 nanoparticles adsorbent: characterization and application of error functions for adsorption of fluoride. MethodsX 7. https://doi.org/10.1016/j.mex.2020.100786
Mohafez FS, Davarpanah AM, Rahdar A et al (2021) Structural, magnetic, and in vitro inhibitory characteristics of Ce-substituted MnFe2O4 nanoparticles. Appl Phys A Mater Sci Process 127:600. https://doi.org/10.1007/s00339-021-04759-4 DOI
Mokashi AU, Ganachari SV, Yaradoddi JS et al (2018) Synthesis and characterization of nano strontium ferrite and its gas sensing studies. IOP Conf Ser Mater Sci Eng 376:012055. https://doi.org/10.1088/1757-899X/376/1/012055 DOI
Movchikova AA, Suchaneck G, Malyshkina OV, Gerlach G (2007) Characterization of ferroelectrics by thermal wave methods. J Eur Ceram Soc 27:4007–4010. https://doi.org/10.1016/j.jeurceramsoc.2007.02.083 DOI
Mustafa HJ, Al-Saadi TM (2021) Effects of gum arabic-coated magnetite nanoparticles on the removal of Pb ions from aqueous solutions. Iraqi J Sci 62:889–896. https://doi.org/10.24996/ijs.2021.62.3.20 DOI
Powar RR, Phadtare VD, Parale VG et al (2020) Effect of zinc substitution on magnesium ferrite nanoparticles: structural, electrical, magnetic, and gas-sensing properties. Mater Sci Eng B Solid-State Mater Adv Technol 262. https://doi.org/10.1016/j.mseb.2020.114776
Qurrat-Ul-Ain KS, Gul Z et al (2019) Anionic azo dyes removal from water using amine-functionalized cobalt-iron oxide nanoparticles: a comparative time-dependent study and structural optimization towards the removal mechanism. RSC Adv 10:1021–1041. https://doi.org/10.1039/c9ra07686g DOI
Reis J, Lopes D, Graça D et al (2023) Using low-cost sensors to assess real-time comfort and air quality patterns in indoor households. Environ Sci Pollut Res 30:7736–7751. https://doi.org/10.1007/s11356-022-22771-w DOI
Román IP, Chisvert Alberto A, Canals A (2011) Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples. J Chromatogr A 1218:2467–2475. https://doi.org/10.1016/j.chroma.2011.02.047 DOI
Sargazi S, Hajinezhad MR, Rahdar A et al (2021) Assessment of SnFe2O4 nanoparticles for potential application in theranostics: synthesis, characterization, in vitro, and in vivo toxicity. Materials 14:825. https://doi.org/10.3390/ma14040825 DOI
Sarma GK, Sen Gupta S, Bhattacharyya KG (2019) Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res 26:6245–6278. https://doi.org/10.1007/s11356-018-04093-y DOI
Shaterian M, Rezvani A, Abbasian AR (2019) Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab65e0
Shebl A, Hassan AA, Salama DM et al (2020) Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e03596
Tran CV, La DD, Thi Hoai PN et al (2021) New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater. J Hazard Mater 420:126636. https://doi.org/10.1016/j.jhazmat.2021.126636 DOI
Vamvakidis K, Kostitsi T-M, Makridis A, Dendrinou-Samara C (2020) Diverse surface chemistry of cobalt ferrite nanoparticles to optimize copper(II) removal from aqueous media. Materials 13. https://doi.org/10.3390/ma13071537
Vishwakarma AK, Yadava L (2021) Structural and sensing properties of ethanol gas using Pd-doped SnO2 thick film gas sensor. Environ Sci Pollut Res 28:3920–3927. https://doi.org/10.1007/s11356-020-10211-6 DOI
Wu X, Wang J, Cai C et al (2021) Measurement techniques for sulfur trioxide concentration in coal-fired flue gas: a review. Environ Sci Pollut Res 28:22278–22295. https://doi.org/10.1007/s11356-021-12730-2 DOI
Yao J, Deng Y, Pan S et al (2021) The difference in the adsorption mechanisms of magnetic ferrites modified carbon nanotubes. J Hazard Mater 415:125551. https://doi.org/10.1016/j.jhazmat.2021.125551 DOI
Zhang Q, Zhou J, Zhang L et al (2022) Sulfur defect and Fe(III) (hydr)oxides on pyrite surface mediate tylosin adsorption in lake water: effect of solution chemistry and dissolved organic matter. Environ Sci Pollut Res 29:90248–90258. https://doi.org/10.1007/s11356-022-22140-7 DOI
Zheng X, Cheng W, Ji C et al (2020) Detection of metal ions in biological systems: a review. Rev Anal Chem 39:231–246. https://doi.org/10.1515/revac-2020-0118 DOI
Phytofabrication of silver nanoparticles using Averrhoa bilimbi leaf extract for anticancer activity