Innate Immune Recognition, Integrated Stress Response, Infection, and Tumorigenesis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VJ01030003
Ministry of Interior of the Czech Republic
PubMed
37106700
PubMed Central
PMC10135864
DOI
10.3390/biology12040499
PII: biology12040499
Knihovny.cz E-resources
- Keywords
- infection, innate immunity, tumorigenesis,
- Publication type
- Journal Article MeSH
Engagement of PRRs in recognition of PAMPs or DAMPs is one of the processes that initiates cellular stress. These sensors are involved in signaling pathways leading to induction of innate immune processes. Signaling initiated by PRRs is associated with the activation of MyD88-dependent signaling pathways and myddosome formation. MyD88 downstream signaling depends upon the context of signaling initiation, the cell (sub)type and the microenvironment of signal initiation. Recognition of PAMPs or DAMPs through PRRs activates the cellular autonomous defence mechanism, which orchestrates the cell responses to resolve specific insults at the single cell level. In general, stressed endoplasmic reticulum is directly linked with the induction of autophagy and initiation of mitochondrial stress. These processes are regulated by the release of Ca2+ from ER stores accepted by mitochondria, which respond through membrane depolarization and the production of reactive oxygen species generating signals leading to inflammasome activation. In parallel, signaling from PRRs initiates the accumulation of misfolded or inappropriately post-translationally modified proteins in the ER and triggers a group of conserved emergency rescue pathways known as unfolded protein response. The cell-autonomous effector mechanisms have evolutionarily ancient roots and were gradually specialized for the defence of specific cell (sub)types. All of these processes are common to the innate immune recognition of microbial pathogens and tumorigenesis as well. PRRs are active in both cases. Downstream are activated signaling pathways initiated by myddosomes, translated by the cellular autonomous defence mechanism, and finalized by inflammasomes.
See more in PubMed
Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. PubMed DOI
Kubelkova K., Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front. Cell. Infect. Microbiol. 2019;9:241. PubMed PMC
Tang D., Kang R., Coyne C.B., Zeh H.J., Lotze M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012;249:158–175. doi: 10.1111/j.1600-065X.2012.01146.x. PubMed DOI PMC
Hajishengallis G., Lambris J.D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 2010;31:154–163. doi: 10.1016/j.it.2010.01.002. PubMed DOI PMC
Song W.C. Crosstalk between complement and toll-like receptors. Toxicol. Pathol. 2012;40:174–182. doi: 10.1177/0192623311428478. PubMed DOI
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: Three musketeers’ one target. Int. Rev. Immunol. 2019;38:131–156. doi: 10.1080/08830185.2019.1609962. PubMed DOI
Barratt-Due A., Pischke S.E., Nilsson P.H., Espevik T., Mollnes T.E. Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J. Leukoc. Biol. 2017;101:193–204. PubMed PMC
Walter P., Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038. PubMed DOI
Gardner B.M., Pincus D., Gotthardt K., Gallagher C.M., Walter P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 2013;5:a013169. doi: 10.1101/cshperspect.a013169. PubMed DOI PMC
Hetz C., Papa F.R. The Unfolded Protein Response and Cell Fate Control. Mol. Cell. 2018;69:169–181. doi: 10.1016/j.molcel.2017.06.017. PubMed DOI
Nakahira K., Hisata S., Choi A.M. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid. Redox Signal. 2015;23:1329–1350. PubMed PMC
Afshar-Kharghan V. The role of the complement system in cancer. J. Clin. Invest. 2017;127:780–789. doi: 10.1172/JCI90962. PubMed DOI PMC
Ostrand-Rosenberg S. Cancer and complement. Nat. Biotechnol. 2008;26:1348–1349. doi: 10.1038/nbt1208-1348. PubMed DOI PMC
Ostrand-Rosenberg S., Sinha P. Myeloid-derived suppressor cells: Linking inflammation and cancer. J. Immunol. 2009;182:4499–4506. PubMed PMC
Ostrand-Rosenberg S. Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr. Opin. Immunol. 2018;51:68–75. doi: 10.1016/j.coi.2018.03.007. PubMed DOI PMC
Hernandez C., Huebener P., Schwabe R.F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene. 2016;35:5931–5941. PubMed PMC
Jang G.Y., Lee J.W., Kim Y.S., Lee S.E., Han H.D., Hong K.J., Kang T.H., Park Y.M. Interactions between tumor-derived proteins and Toll-like receptors. Exp. Mol. Med. 2020;52:1926–1935. PubMed PMC
Xia C., Braunstein Z., Toomey A.C., Zhong J., Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front. Immunol. 2018;8:1908. doi: 10.3389/fimmu.2017.01908. PubMed DOI PMC
Klune J.R., Dhupar R., Cardinal J., Billiar T.R., Tsung A. HMGB1: Endogenous Danger Signaling. Mol. Med. 2008;14:476–484. doi: 10.2119/2008-00034.Klune. PubMed DOI PMC
Li X., Ye Y., Peng K., Zeng Z., Chen L., Zeng Y. Histones: The critical players in innate immunity. Front. Immunol. 2022;13:1030610. doi: 10.3389/fimmu.2022.1030610. PubMed DOI PMC
Koenig A., Buskiewicz-Koenig I.A. Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Antioxid. Redox Signal. 2022;36:441–461. doi: 10.1089/ars.2021.0073. PubMed DOI PMC
Huang S. mTOR Signaling in Metabolism and Cancer. Cells. 2020;9:2278. doi: 10.3390/cells9102278. PubMed DOI PMC
Roh J.S., Sohn D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18:e27. doi: 10.4110/in.2018.18.e27. PubMed DOI PMC
Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016;17:1374–1395. doi: 10.15252/embr.201642195. PubMed DOI PMC
Knowles A., Campbell S., Cross N., Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front. Microbiol. 2021;12:645161. doi: 10.3389/fmicb.2021.645161. PubMed DOI PMC
Wu Y., Zhang Z., Li Y., Li Y. The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism. Front. Microbiol. 2022;12:814635. doi: 10.3389/fmicb.2021.814635. PubMed DOI PMC
Costa-Mattioli M., Walter P. The integrated stress response: From mechanism to disease. Science. 2020;368:eaat5314. doi: 10.1126/science.aat5314. PubMed DOI PMC
Tian X., Zhang S., Zhou L., Seyhan A.A., Hernandez Borrero L., Zhang Y., El-Deiry W.S. Targeting the Integrated Stress Response in Cancer Therapy. Front. Pharmacol. 2021;12:747837. doi: 10.3389/fphar.2021.747837. PubMed DOI PMC
Tartey S., Kanneganti T.D. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology. 2019;156:329–338. doi: 10.1111/imm.13046. PubMed DOI PMC
Karan D. Inflammasomes: Emerging Central Players in Cancer Immunology and Immunotherapy. Front. Immunol. 2018;9:3028. PubMed PMC
Sharma B.R., Karki R., Kanneganti T.D. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur. J. Immunol. 2019;49:1998–2011. doi: 10.1002/eji.201848070. PubMed DOI PMC
den Hoed C.M., Kuipers E.J. Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier; Amsterdam, The Netherlands: 2020. Helicobacter pylori infection; pp. 476–480.
Boltin D., Goldberg E., Bugaevsky O., Kelner E., Birkenfeld S., Gingold-Belfer R., Keller N., Niv Y., Dickmanet R. Colonic carriage of Streptococcus bovis and colorectal neoplasia: A prospective 17-year longitudinal case–control study. Eur. J. Gastroenterol. Hepatol. 2015;27:1449–1453. PubMed
Chaturvedi A.K., Gaydos C.A., Agreda P., Holden J.P., Chatterjee N., Goedert J.J., Tondella M.L. Chlamydia pneumoniae infection and risk for lung cancer. Cancer Epidemiol. Biomark. Prev. 2010;19:1498–1505. PubMed
Hashemi G.N., Heidarzadeh S., Jahangiri S., Farhood B., Mortezaee K., Khanlarkhani N., Negahdari B. Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J. Cell Physiol. 2019;234:2337–2344. doi: 10.1002/jcp.27250. PubMed DOI
Karpiński T.M. Role of oral microbiota in cancer development. Microorganisms. 2019;7:20. doi: 10.3390/microorganisms7010020. PubMed DOI PMC
Hatano Y., Ideta T., Hirata A., Hatano K., Tomita H., Okada H., Shimizu M., Tanaka T., Hara A. Virus-Driven Carcinogenesis. Cancers. 2021;13:2625. PubMed PMC
zur Hausen H. Viruses in human cancers. Science. 1991;254:1167–1173. doi: 10.1126/science.1659743. PubMed DOI
Blattner W.A. Human retroviruses: Their role in cancer. Proc. Assoc. Am. Physicians. 1999;111:563–572. doi: 10.1046/j.1525-1381.1999.99210.x. PubMed DOI
Diamond M.S., Kanneganti T.D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022;23:165–176. PubMed PMC
Turnquist C., Ryan B.M., Horikawa I., Harris B.T., Harris C.C. Cytokine Storms in Cancer and COVID-19. Cancer Cell. 2020;38:598–601. doi: 10.1016/j.ccell.2020.09.019. PubMed DOI PMC
Stingi A., Cirillo L. SARS-CoV-2 infection and cancer: Evidence for and against a role of SARS-CoV-2 in cancer onset. Bioessays. 2021;43:e2000289. PubMed PMC
Malkani N., Rashid M.U. SARS-CoV-2 infection and lung tumor microenvironment. Mol. Biol. Rep. 2021;48:1925–1934. PubMed PMC
Hara H., Seregin S.S., Yang D., Fukase K., Chamaillard M., Alnemri E.S., Núñez G. The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell. 2018;175:1651–1664.e14. doi: 10.1016/j.cell.2018.09.047. PubMed DOI PMC
Theisen E., Sauer J.D. Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy. Curr. Top. Microbiol. Immunol. 2016;397:133–160. PubMed PMC
Wu J., Fernandes-Alnemri T., Alnemri E.S. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol. 2010;30:693–702. doi: 10.1007/s10875-010-9425-2. PubMed DOI PMC
Guirnalda P., Wood L., Paterson Y. Listeria monocytogenes and its products as agents for cancer immunotherapy. Adv. Immunol. 2012;113:81–118. PubMed
Vidovic D., Giacomantonio C. Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma. Cancers. 2020;12:1321. doi: 10.3390/cancers12051321. PubMed DOI PMC
Han J., Gu X., Li Y., Wu Q. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed. Pharmacother. 2020;129:110393. PubMed
Kremenovic M., Schenk M., Lee D.J. Clinical and molecular insights into BCG immunotherapy for melanoma. J. Intern. Med. 2020;288:625–640. doi: 10.1111/joim.13037. PubMed DOI
Coley W.B. The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am. J. Med. Sci. 1983;105:487–511. doi: 10.1097/00000441-189305000-00001. PubMed DOI
McCarthy E.F. The toxins of William, B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 2006;26:154–158. PubMed PMC
Coley W.B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus of erysipelas and the bacillus prodigiosus) Practitioner. 1909;83:589–613. doi: 10.1177/003591571000301601. PubMed DOI PMC