• This record comes from PubMed

Innate Immune Recognition, Integrated Stress Response, Infection, and Tumorigenesis

. 2023 Mar 25 ; 12 (4) : . [epub] 20230325

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
VJ01030003 Ministry of Interior of the Czech Republic

Engagement of PRRs in recognition of PAMPs or DAMPs is one of the processes that initiates cellular stress. These sensors are involved in signaling pathways leading to induction of innate immune processes. Signaling initiated by PRRs is associated with the activation of MyD88-dependent signaling pathways and myddosome formation. MyD88 downstream signaling depends upon the context of signaling initiation, the cell (sub)type and the microenvironment of signal initiation. Recognition of PAMPs or DAMPs through PRRs activates the cellular autonomous defence mechanism, which orchestrates the cell responses to resolve specific insults at the single cell level. In general, stressed endoplasmic reticulum is directly linked with the induction of autophagy and initiation of mitochondrial stress. These processes are regulated by the release of Ca2+ from ER stores accepted by mitochondria, which respond through membrane depolarization and the production of reactive oxygen species generating signals leading to inflammasome activation. In parallel, signaling from PRRs initiates the accumulation of misfolded or inappropriately post-translationally modified proteins in the ER and triggers a group of conserved emergency rescue pathways known as unfolded protein response. The cell-autonomous effector mechanisms have evolutionarily ancient roots and were gradually specialized for the defence of specific cell (sub)types. All of these processes are common to the innate immune recognition of microbial pathogens and tumorigenesis as well. PRRs are active in both cases. Downstream are activated signaling pathways initiated by myddosomes, translated by the cellular autonomous defence mechanism, and finalized by inflammasomes.

See more in PubMed

Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015. PubMed DOI

Kubelkova K., Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front. Cell. Infect. Microbiol. 2019;9:241. PubMed PMC

Tang D., Kang R., Coyne C.B., Zeh H.J., Lotze M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012;249:158–175. doi: 10.1111/j.1600-065X.2012.01146.x. PubMed DOI PMC

Hajishengallis G., Lambris J.D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 2010;31:154–163. doi: 10.1016/j.it.2010.01.002. PubMed DOI PMC

Song W.C. Crosstalk between complement and toll-like receptors. Toxicol. Pathol. 2012;40:174–182. doi: 10.1177/0192623311428478. PubMed DOI

Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: Three musketeers’ one target. Int. Rev. Immunol. 2019;38:131–156. doi: 10.1080/08830185.2019.1609962. PubMed DOI

Barratt-Due A., Pischke S.E., Nilsson P.H., Espevik T., Mollnes T.E. Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J. Leukoc. Biol. 2017;101:193–204. PubMed PMC

Walter P., Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. doi: 10.1126/science.1209038. PubMed DOI

Gardner B.M., Pincus D., Gotthardt K., Gallagher C.M., Walter P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 2013;5:a013169. doi: 10.1101/cshperspect.a013169. PubMed DOI PMC

Hetz C., Papa F.R. The Unfolded Protein Response and Cell Fate Control. Mol. Cell. 2018;69:169–181. doi: 10.1016/j.molcel.2017.06.017. PubMed DOI

Nakahira K., Hisata S., Choi A.M. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid. Redox Signal. 2015;23:1329–1350. PubMed PMC

Afshar-Kharghan V. The role of the complement system in cancer. J. Clin. Invest. 2017;127:780–789. doi: 10.1172/JCI90962. PubMed DOI PMC

Ostrand-Rosenberg S. Cancer and complement. Nat. Biotechnol. 2008;26:1348–1349. doi: 10.1038/nbt1208-1348. PubMed DOI PMC

Ostrand-Rosenberg S., Sinha P. Myeloid-derived suppressor cells: Linking inflammation and cancer. J. Immunol. 2009;182:4499–4506. PubMed PMC

Ostrand-Rosenberg S. Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr. Opin. Immunol. 2018;51:68–75. doi: 10.1016/j.coi.2018.03.007. PubMed DOI PMC

Hernandez C., Huebener P., Schwabe R.F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene. 2016;35:5931–5941. PubMed PMC

Jang G.Y., Lee J.W., Kim Y.S., Lee S.E., Han H.D., Hong K.J., Kang T.H., Park Y.M. Interactions between tumor-derived proteins and Toll-like receptors. Exp. Mol. Med. 2020;52:1926–1935. PubMed PMC

Xia C., Braunstein Z., Toomey A.C., Zhong J., Rao X. S100 Proteins As an Important Regulator of Macrophage Inflammation. Front. Immunol. 2018;8:1908. doi: 10.3389/fimmu.2017.01908. PubMed DOI PMC

Klune J.R., Dhupar R., Cardinal J., Billiar T.R., Tsung A. HMGB1: Endogenous Danger Signaling. Mol. Med. 2008;14:476–484. doi: 10.2119/2008-00034.Klune. PubMed DOI PMC

Li X., Ye Y., Peng K., Zeng Z., Chen L., Zeng Y. Histones: The critical players in innate immunity. Front. Immunol. 2022;13:1030610. doi: 10.3389/fimmu.2022.1030610. PubMed DOI PMC

Koenig A., Buskiewicz-Koenig I.A. Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Antioxid. Redox Signal. 2022;36:441–461. doi: 10.1089/ars.2021.0073. PubMed DOI PMC

Huang S. mTOR Signaling in Metabolism and Cancer. Cells. 2020;9:2278. doi: 10.3390/cells9102278. PubMed DOI PMC

Roh J.S., Sohn D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18:e27. doi: 10.4110/in.2018.18.e27. PubMed DOI PMC

Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016;17:1374–1395. doi: 10.15252/embr.201642195. PubMed DOI PMC

Knowles A., Campbell S., Cross N., Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front. Microbiol. 2021;12:645161. doi: 10.3389/fmicb.2021.645161. PubMed DOI PMC

Wu Y., Zhang Z., Li Y., Li Y. The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism. Front. Microbiol. 2022;12:814635. doi: 10.3389/fmicb.2021.814635. PubMed DOI PMC

Costa-Mattioli M., Walter P. The integrated stress response: From mechanism to disease. Science. 2020;368:eaat5314. doi: 10.1126/science.aat5314. PubMed DOI PMC

Tian X., Zhang S., Zhou L., Seyhan A.A., Hernandez Borrero L., Zhang Y., El-Deiry W.S. Targeting the Integrated Stress Response in Cancer Therapy. Front. Pharmacol. 2021;12:747837. doi: 10.3389/fphar.2021.747837. PubMed DOI PMC

Tartey S., Kanneganti T.D. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology. 2019;156:329–338. doi: 10.1111/imm.13046. PubMed DOI PMC

Karan D. Inflammasomes: Emerging Central Players in Cancer Immunology and Immunotherapy. Front. Immunol. 2018;9:3028. PubMed PMC

Sharma B.R., Karki R., Kanneganti T.D. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur. J. Immunol. 2019;49:1998–2011. doi: 10.1002/eji.201848070. PubMed DOI PMC

den Hoed C.M., Kuipers E.J. Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier; Amsterdam, The Netherlands: 2020. Helicobacter pylori infection; pp. 476–480.

Boltin D., Goldberg E., Bugaevsky O., Kelner E., Birkenfeld S., Gingold-Belfer R., Keller N., Niv Y., Dickmanet R. Colonic carriage of Streptococcus bovis and colorectal neoplasia: A prospective 17-year longitudinal case–control study. Eur. J. Gastroenterol. Hepatol. 2015;27:1449–1453. PubMed

Chaturvedi A.K., Gaydos C.A., Agreda P., Holden J.P., Chatterjee N., Goedert J.J., Tondella M.L. Chlamydia pneumoniae infection and risk for lung cancer. Cancer Epidemiol. Biomark. Prev. 2010;19:1498–1505. PubMed

Hashemi G.N., Heidarzadeh S., Jahangiri S., Farhood B., Mortezaee K., Khanlarkhani N., Negahdari B. Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J. Cell Physiol. 2019;234:2337–2344. doi: 10.1002/jcp.27250. PubMed DOI

Karpiński T.M. Role of oral microbiota in cancer development. Microorganisms. 2019;7:20. doi: 10.3390/microorganisms7010020. PubMed DOI PMC

Hatano Y., Ideta T., Hirata A., Hatano K., Tomita H., Okada H., Shimizu M., Tanaka T., Hara A. Virus-Driven Carcinogenesis. Cancers. 2021;13:2625. PubMed PMC

zur Hausen H. Viruses in human cancers. Science. 1991;254:1167–1173. doi: 10.1126/science.1659743. PubMed DOI

Blattner W.A. Human retroviruses: Their role in cancer. Proc. Assoc. Am. Physicians. 1999;111:563–572. doi: 10.1046/j.1525-1381.1999.99210.x. PubMed DOI

Diamond M.S., Kanneganti T.D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022;23:165–176. PubMed PMC

Turnquist C., Ryan B.M., Horikawa I., Harris B.T., Harris C.C. Cytokine Storms in Cancer and COVID-19. Cancer Cell. 2020;38:598–601. doi: 10.1016/j.ccell.2020.09.019. PubMed DOI PMC

Stingi A., Cirillo L. SARS-CoV-2 infection and cancer: Evidence for and against a role of SARS-CoV-2 in cancer onset. Bioessays. 2021;43:e2000289. PubMed PMC

Malkani N., Rashid M.U. SARS-CoV-2 infection and lung tumor microenvironment. Mol. Biol. Rep. 2021;48:1925–1934. PubMed PMC

Hara H., Seregin S.S., Yang D., Fukase K., Chamaillard M., Alnemri E.S., Núñez G. The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell. 2018;175:1651–1664.e14. doi: 10.1016/j.cell.2018.09.047. PubMed DOI PMC

Theisen E., Sauer J.D. Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy. Curr. Top. Microbiol. Immunol. 2016;397:133–160. PubMed PMC

Wu J., Fernandes-Alnemri T., Alnemri E.S. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol. 2010;30:693–702. doi: 10.1007/s10875-010-9425-2. PubMed DOI PMC

Guirnalda P., Wood L., Paterson Y. Listeria monocytogenes and its products as agents for cancer immunotherapy. Adv. Immunol. 2012;113:81–118. PubMed

Vidovic D., Giacomantonio C. Insights into the Molecular Mechanisms Behind Intralesional Immunotherapies for Advanced Melanoma. Cancers. 2020;12:1321. doi: 10.3390/cancers12051321. PubMed DOI PMC

Han J., Gu X., Li Y., Wu Q. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed. Pharmacother. 2020;129:110393. PubMed

Kremenovic M., Schenk M., Lee D.J. Clinical and molecular insights into BCG immunotherapy for melanoma. J. Intern. Med. 2020;288:625–640. doi: 10.1111/joim.13037. PubMed DOI

Coley W.B. The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am. J. Med. Sci. 1983;105:487–511. doi: 10.1097/00000441-189305000-00001. PubMed DOI

McCarthy E.F. The toxins of William, B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 2006;26:154–158. PubMed PMC

Coley W.B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus of erysipelas and the bacillus prodigiosus) Practitioner. 1909;83:589–613. doi: 10.1177/003591571000301601. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...