NADPH oxidase 4 contributes to oxidative stress in a mouse model of myocardial infarction

. 2023 Apr 30 ; 72 (2) : 177-186.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159852

Oxidative stress closely related to the progression and severity of myocardial infarction (MI). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) is one of the major enzymes that generate reactive oxygen species (ROS) in cardiovascular system. Here, we aim to elucidate the pathological role of NOX4 in MI. MI mouse model was created by the coronary artery ligation. NOX4 was specifically knocked down in heart through intramyocardial injection of siRNA. NOX4 expression and oxidative stress indicators were determined at different time points using qRT-PCR, Western blot, and ELISA, and then analyzed by Pearson's correlation. Cardiac function was evaluated by using echocardiographic technique. NOX4 was upregulated in myocardial tissues of MI mice, which positively correlated with the elevation of oxidative stress indicators. Knockdown of NOX4 in heart significantly reduced the production of ROS and the level of oxidative stress in left ventricle tissues, which was accompanied by significant improvement of cardiac function in MI mice. Selective knockdown of NOX4 in heart attenuates MI-induced oxidative stress and improves cardiac function, suggesting inhibition of NOX4/ROS axis in heart using siRNA is a potential therapeutic treatment for MI-induced cardiac dysfunction.

Zobrazit více v PubMed

Anderson JL, Morrow DA. Acute Myocardial Infarction. N Engl J Med. 2017;376:2053–2064. doi: 10.1056/NEJMra1606915. PubMed DOI

Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–1602. doi: 10.1016/S0140-6736(16)31678-6. PubMed DOI PMC

Bahall M, Seemungal T, Legall G. Risk factors for first-time acute myocardial infarction patients in Trinidad. BMC Public Health. 2018;18:161. doi: 10.1186/s12889-018-5080-y. PubMed DOI PMC

Thygesen Kristian, Alpert Joseph S, Jaffe Allan S, Simoons Maarten L, Chaitman Bernard R, White Harvey D, Thygesen Kristian, Alpert Joseph S, et al. Third Universal Definition of Myocardial Infarction. J Am Coll Cardiol. 2012;60:1581–1598. doi: 10.1016/j.jacc.2012.08.001. PubMed DOI

Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A. 2010;107:15565–15570. doi: 10.1073/pnas.1002178107. PubMed DOI PMC

Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X, Yu H, Miao J, Kao R, Kalbfleisch J, Williams D, Li C. Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling. J Mol Cell Cardiol. 2015;89:87–97. doi: 10.1016/j.yjmcc.2015.10.011. PubMed DOI PMC

Panth N, Paudel KR, Parajuli K. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Adv Med. 2016;2016:9152732. doi: 10.1155/2016/9152732. PubMed DOI PMC

Cleland JG, Torabi A, Khan NK. Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart. 2005;91(Suppl 2):ii7–13. ii43–18. doi: 10.1136/hrt.2005.062026. discussion ii31. PubMed DOI PMC

Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–1172. doi: 10.1161/01.CIR.81.4.1161. PubMed DOI

Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005. PubMed DOI

Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275:3249–3277. doi: 10.1111/j.1742-4658.2008.06488.x. PubMed DOI

Zhang Y, Murugesan P, Huang K, Cai H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 2020;17:170–194. doi: 10.1038/s41569-019-0260-8. PubMed DOI PMC

Craige SM, Kant S, Reif M, Chen K, Pei Y, Angoff R, Sugamura K, Fitzgibbons T, Keaney JF., Jr Endothelial NADPH oxidase 4 protects ApoE−/− mice from atherosclerotic lesions. Free Radic Biol Med. 2015;89:1–7. doi: 10.1016/j.freeradbiomed.2015.07.004. PubMed DOI PMC

Lassegue B, San Martin A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364–1390. doi: 10.1161/CIRCRESAHA.111.243972. PubMed DOI PMC

Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal. 2006;18:69–82. doi: 10.1016/j.cellsig.2005.03.023. PubMed DOI

Zhang P, Yao Q, Lu L, Li Y, Chen PJ, Duan C. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 2014;6:1110–1121. doi: 10.1016/j.celrep.2014.02.011. PubMed DOI

Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, Fong GH, Tian R, Sadoshima J. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1alpha and upregulation of peroxisome proliferator-activated receptor-alpha. Circ Res. 2013;112:1135–1149. doi: 10.1161/CIRCRESAHA.111.300171. PubMed DOI PMC

Xie J, Hong E, Ding B, Jiang W, Zheng S, Xie Z, Tian D, Chen Y. Inhibition of NOX4/ROS Suppresses Neuronal and Blood-Brain Barrier Injury by Attenuating Oxidative Stress After Intracerebral Hemorrhage. Front Cell Neurosci. 2020;14:578060. doi: 10.3389/fncel.2020.578060. PubMed DOI PMC

Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res. 2010;106:1253–1264. doi: 10.1161/CIRCRESAHA.109.213116. PubMed DOI PMC

nfanger DW, Cao X, Butler SD, Burmeister MA, Zhou Y, Stupinski JA, Sharma RV, Davisson RL. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis. Circ Res. 2010;106:1763–1774. doi: 10.1161/CIRCRESAHA.109.213025. PubMed DOI PMC

Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^(−delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath. 2013;3:71–85. PubMed PMC

Li Y, Zhou J, Zhang O, Wu X, Guan X, Xue Y, Li S, Zhuang X, Zhou B, Miao G, Zhang L. Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol. 2020;80:106156. doi: 10.1016/j.intimp.2019.106156. PubMed DOI

Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol. 2020;115:73. doi: 10.1007/s00395-020-00829-5. PubMed DOI PMC

Toldo S, Mauro AG, Cutter Z, Van Tassell BW, Mezzaroma E, Del Buono MG, Prestamburgo A, Potere N, Abbate A. The NLRP3 Inflammasome Inhibitor, OLT1177 (Dapansutrile), Reduces Infarct Size and Preserves Contractile Function After Ischemia Reperfusion Injury in the Mouse. J Cardiovasc Pharmacol. 2019;73:215–222. doi: 10.1097/FJC.0000000000000658. PubMed DOI

Charfeddine S, Mallek S, Triki F, Hammami R, Abid D, Abid L, Kammoun S. Echocardiographic analysis of the left ventricular function in young athletes: a focus on speckle tracking imaging. Pan Afr Med J. 2016;25:171. doi: 10.11604/pamj.2016.25.171.9095. PubMed DOI PMC

Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N. Oxidative stress and ischemic myocardial syndromes. Med Sci Monit. 2009;15:RA209–219. PubMed

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H2181–2190. doi: 10.1152/ajpheart.00554.2011. PubMed DOI

Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol. 2017;174:1733–1749. doi: 10.1111/bph.13425. PubMed DOI PMC

Gray SP, Jandeleit-Dahm KA. The role of NADPH oxidase in vascular disease--hypertension, atherosclerosis & stroke. Curr Pharm Des. 2015;21:5933–5944. doi: 10.2174/1381612821666151029112302. PubMed DOI

Stevenson MD, Canugovi C, Vendrov AE, Hayami T, Bowles DE, Krause KH, Madamanchi NR, Runge MS. NADPH Oxidase 4 regulates inflammation in ischemic heart failure: Role of soluble epoxide hydrolase. Antioxid Redox Signal. 2019;31:39–58. doi: 10.1089/ars.2018.7548. PubMed DOI PMC

Yang Q, Wu FR, Wang JN, Gao L, Jiang L, Li HD, Ma Q, Liu XQ, Wei B, Zhou L, Wen J, Ma TT, Li J, Meng XM. Nox4 in renal diseases: An update. Free Radic Biol Med. 2018;124:466–472. doi: 10.1016/j.freeradbiomed.2018.06.042. PubMed DOI

Zawada WM, Mrak RE, Biedermann J, Palmer QD, Gentleman SM, Aboud O, Griffin WS. Loss of angiotensin II receptor expression in dopamine neurons in Parkinson‘s disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation. Acta Neuropathol Commun. 2015;3:9. doi: 10.1186/s40478-015-0189-z. PubMed DOI PMC

Casas AI, Geuss E, Kleikers PWM, Mencl S, Herrmann AM, Buendia I, Egea J, Meuth SG, Lopez MG, Kleinschnitz C, Schmidt H. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage. Proc Natl Acad Sci USA. 2017;114:12315–12320. doi: 10.1073/pnas.1705034114. PubMed DOI PMC

El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev. 2009;14:225–241. doi: 10.1007/s10741-008-9132-8. PubMed DOI

Eschenhagen T. Beta-adrenergic signaling in heart failure-adapt or die. Nat Med. 2008;14:485–487. doi: 10.1038/nm0508-485. PubMed DOI

Cheng J, Zou Q, Xue Y. Nerol protects against hypoxia/reoxygenation-induced apoptotic injury by activating PI3K/AKT signaling in cardiomyocytes. STEMedicine. 2021;2:e87. doi: 10.37175/stemedicine.v2i6.87. DOI

Sun Y. Oxidative stress and cardiac repair/remodeling following infarction. Am J Med Sci. 2007;334:197–205. doi: 10.1097/MAJ.0b013e318157388f. PubMed DOI

von Harsdorf R. “Fas-ten” your seat belt: anti-apoptotic treatment in heart failure takes off. Circ Res. 2004;95:554–556. doi: 10.1161/01.RES.0000143717.70275.8f. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...