In-depth Temporal Transcriptome Profiling of Monkeypox and Host Cells using Nanopore Sequencing
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články
Grantová podpora
K 128247
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
K 142674
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
FK 128252
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
PubMed
37160911
PubMed Central
PMC10170163
DOI
10.1038/s41597-023-02149-4
PII: 10.1038/s41597-023-02149-4
Knihovny.cz E-zdroje
- MeSH
- komplementární DNA MeSH
- lidé MeSH
- nanopórové sekvenování * MeSH
- opičí neštovice * MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Názvy látek
- komplementární DNA MeSH
The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.
Institute of Biology Faculty of Sciences University of Pécs Pécs Hungary
National Laboratory of Virology Szentágothai Research Centre University of Pécs Pécs Hungary
Veterinary Research Institute Hudcova 70 CZ 62100 Brno Czech Republic
Zobrazit více v PubMed
Diven DG. An overview of poxviruses. J. Am. Acad. Dermatol. 2001;44:1–16. doi: 10.1067/mjd.2001.109302. PubMed DOI
Moss, B. & Smith, G. L. Poxviridae: The Viruses and Their Replication. in Field’s Virology 573–613 (2021).
Elwood JM. Smallpox and its eradication. J. Epidemiol. Community Heal. 1989;43:92–92. doi: 10.1136/jech.43.1.92. DOI
Adler H, et al. Clinical features and management of human monkeypox: a retrospective observational study in the UK. Lancet Infect. Dis. 2022;22:1153–1162. doi: 10.1016/S1473-3099(22)00228-6. PubMed DOI PMC
Noe, S. et al. Clinical and virological features of first human monkeypox cases in Germany. Infection, 10.1007/s15010-022-01874-z (2022). PubMed PMC
Luna N, et al. Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak: Emergence of a novel viral lineage? Travel Med. Infect. Dis. 2022;49:102402. doi: 10.1016/j.tmaid.2022.102402. PubMed DOI PMC
Isidro J, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022;28:1569–1572. doi: 10.1038/s41591-022-01907-y. PubMed DOI PMC
Kumar N, Acharya A, Gendelman HE, Byrareddy SN. The 2022 outbreak and the pathobiology of the monkeypox virus. J. Autoimmun. 2022;131:102855. doi: 10.1016/j.jaut.2022.102855. PubMed DOI PMC
Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. Orthopoxvirus genome evolution: The role of gene loss. Viruses. 2010;2:1933–1967. doi: 10.3390/v2091933. PubMed DOI PMC
Walsh, D. Poxviruses: Slipping and sliding through transcription and translation. PLoS Pathogens vol. 13 at 10.1371/journal.ppat.1006634 (2017). PubMed PMC
Alkhalil A, et al. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. Virol. J. 2010;7:1–19. doi: 10.1186/1743-422X-7-173. PubMed DOI PMC
Rubins, K. H., Hensley, L. E., Relman, D. A. & Brown, P. O. Stunned silence: Gene expression programs in human cells infected with monkeypox or vaccinia virus. PLoS One6 (2011). PubMed PMC
Bourquain, D., Dabrowski, P. W. & Nitsche, A. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes. Virol. J. 10 (2013). PubMed PMC
Rubins KH, et al. Comparative analysis of viral gene expression programs during poxvirus infection: A transcriptional map of the vaccinia and monkeypox genomes. PLoS One. 2008;3:1–12. doi: 10.1371/journal.pone.0002628. PubMed DOI PMC
Xuan, D. T. M. et al. Comparison of Transcriptomic Signatures between Monkeypox-Infected Monkey and Human Cell Lines. J. Immunol. Res. 2022 (2022). PubMed PMC
Tombácz D, et al. Time-course transcriptome profiling of a poxvirus using long-read full-length assay. Pathogens. 2021;10:1–17. doi: 10.3390/pathogens10080919. PubMed DOI PMC
Nagalakshmi, U., Waern, K. & Snyder, M. RNA-seq: A method for comprehensive transcriptome analysis. Current Protocols in Molecular Biology at 10.1002/0471142727.mb0411s89 (2010). PubMed
Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F. Transcriptome analysis using next-generation sequencing. Curr. Opin. Biotechnol. 2013;24:22–30. doi: 10.1016/j.copbio.2012.09.004. PubMed DOI
Anamika, K., Verma, S., Jere, A. & Desai, A. Transcriptomic Profiling Using Next Generation Sequencing - Advances, Advantages, and Challenges. in Next Generation Sequencing: Advances, Applications and Challenges (ed. Kulski, J. K.). 10.5772/61789 (IntechOpen, 2016).
Patterson J, et al. Impact of sequencing depth and technology on de novo RNA-Seq assembly. BMC Genomics. 2019;20:604. doi: 10.1186/s12864-019-5965-x. PubMed DOI PMC
Grünberger F, Ferreira-Cerca S, Grohmann D. Nanopore sequencing of RNA and cDNA molecules in Escherichia coli. RNA. 2022;28:400–417. doi: 10.1261/rna.078937.121. PubMed DOI PMC
Torma G, et al. Combined Short and Long-Read Sequencing Reveals a Complex Transcriptomic Architecture of African Swine Fever Virus. Viruses. 2021;13:579. doi: 10.3390/v13040579. PubMed DOI PMC
Torma G, et al. Dual isoform sequencing reveals complex transcriptomic and epitranscriptomic landscapes of a prototype baculovirus. Sci. Rep. 2022;12:1291. doi: 10.1038/s41598-022-05457-8. PubMed DOI PMC
Shchelkunov SN, et al. Analysis of the Monkeypox Virus Genome. Virology. 2002;297:172–194. doi: 10.1006/viro.2002.1446. PubMed DOI PMC
Prazsák I, et al. Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus. BMC Genomics. 2018;19:1–20. doi: 10.1186/s12864-018-5267-8. PubMed DOI PMC
Soneson C, et al. A comprehensive examination of Nanopore native RNA sequencing for characterization of complex transcriptomes. Nat. Commun. 2019;10:1–14. doi: 10.1038/s41467-019-11272-z. PubMed DOI PMC
Depledge DP, et al. Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-08734-9. PubMed DOI PMC
Olasz, F. et al. Short and Long-Read Sequencing Survey of the Dynamic Transcriptomes of African Swine Fever Virus and the Host Cells. Front. Genet. 11 (2020). PubMed PMC
Fülöp Á, et al. Integrative profiling of Epstein–Barr virus transcriptome using a multiplatform approach. Virol. J. 2022;19:7. doi: 10.1186/s12985-021-01734-6. PubMed DOI PMC
Tombácz D, et al. In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing. Viruses. 2022;14:1289. doi: 10.3390/v14061289. PubMed DOI PMC
Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B. Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. Proc. Natl. Acad. Sci. USA. 2010 doi: 10.1073/pnas.1006594107. PubMed DOI PMC
Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B. Genome-Wide Analysis of the 5′ and 3′ Ends of Vaccinia Virus Early mRNAs Delineates Regulatory Sequences of Annotated and Anomalous Transcripts. J. Virol. 2011 doi: 10.1128/jvi.00428-11. PubMed DOI PMC
Yang Z, et al. Expression Profiling of the Intermediate and Late Stages of Poxvirus Replication. J. Virol. 2011 doi: 10.1128/jvi.05446-11. PubMed DOI PMC
Yang Z, Martens CA, Bruno DP, Porcella SF, Moss B. Pervasive initiation and 3′-end formation of poxvirus postreplicative RNAs. J. Biol. Chem. 2012 doi: 10.1074/jbc.M112.390054. PubMed DOI PMC
Yang Z, Maruri-Avidal L, Sisler J, Stuart CA, Moss B. Cascade regulation of vaccinia virus gene expression is modulated by multistage promoters. Virology. 2013 doi: 10.1016/j.virol.2013.09.007. PubMed DOI PMC
Tombácz D, et al. Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci. Rep. 2020;10:1–13. doi: 10.1038/s41598-020-70794-5. PubMed DOI PMC
Tombácz, D. et al. Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques. Gigascience7 (2018). PubMed PMC
Maróti Z, et al. Time-course transcriptome analysis of host cell response to poxvirus infection using a dual long-read sequencing approach. BMC Res. Notes. 2021;14:239. doi: 10.1186/s13104-021-05657-x. PubMed DOI PMC
Sène MA, et al. Haplotype-resolved de novo assembly of the Vero cell line genome. npj Vaccines. 2021 doi: 10.1038/s41541-021-00358-9. PubMed DOI PMC
2022. NCBI Genbank. https://www.ncbi.nlm.nih.gov/assembly/GCA_023516015.3
NCBI Genbankhttps://www.ncbi.nlm.nih.gov/nuccore/ON563414 (2022).
Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018 doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
2022. ENA European Nucleotide Archive. PRJEB56841
2022. NCBI Sequence Read Archive. ERP141806
Kakuk, B. GitHub.https://github.com/Balays/MPOX_ONT_RNASeq (2022).
Wickham H, et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Morgan M, Pagès H, Obenchain V, H. N. Rsamtools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import (2022).
Wickham, H. ggplot2., 10.1007/978-0-387-98141-3 (Springer New York, 2009).
Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2812. doi: 10.1093/bioinformatics/btu393. PubMed DOI
Wyman, D. et al. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. bioRxiv 672931, 10.1101/672931 (2020).
Hu Y, et al. LIQA: long-read isoform quantification and analysis. Genome Biol. 2021 doi: 10.1186/s13059-021-02399-8. PubMed DOI PMC
Tardaguila M, et al. SQANTI: Extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 2018 doi: 10.1101/gr.222976.117. PubMed DOI PMC
Froussios K, Mourão K, Simpson G, Barton G, Schurch N. Relative abundance of transcripts (RATs): Identifying differential isoform abundance from RNA-seq [version 1; referees: 1 approved, 2 approved with reservations] F1000Research. 2019;8:1–21. doi: 10.12688/f1000research.17916.1. PubMed DOI PMC
Love MI, Soneson C, Patro R. Swimming downstream: Statistical analysis of differential transcript usage following Salmon quantification. F1000Research. 2018 doi: 10.12688/f1000research.15398.3. PubMed DOI PMC
Varoquaux N, Purdom E. A pipeline to analyse time-course gene expression data. F1000Research. 2020;9:1447. doi: 10.12688/f1000research.27262.1. DOI
Ulgen E, Ozisik O, Sezerman OU. PathfindR: An R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front. Genet. 2019 doi: 10.3389/fgene.2019.00858. PubMed DOI PMC