Selection of endogenous control and identification of significant microRNA deregulations in cervical cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37168377
PubMed Central
PMC10164982
DOI
10.3389/fonc.2023.1143691
Knihovny.cz E-zdroje
- Klíčová slova
- NGS, cervical cancer, diagnostic biomarkers, endogenous control, microRNA, normalization strategy,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Cervical cancer causes approximately 350,000 deaths each year. The availability of sensitive and specific diagnostic tests to detect cervical cancer in its early stages is essential to improve survival rates. METHODS: In this study, we compared two strategies for selecting endogenous controls: miRNA profiling by small-RNA sequencing and a commercially available microfluidic card with 30 recommended endogenous controls preloaded by the manufacturer. We used the RefFinder algorithm and coefficient of variation to select endogenous controls. We selected the combination of miR-181a-5p and miR-423-3p as the most optimal normalizer. In the second part of this study, we determined the differential expression (between tumor/non-tumor groups) of microRNA in cervical cancer FFPE tissue samples. We determined the comprehensive miRNA expression profile using small-RNA sequencing technology and verified the results by real-time PCR. We determined the relative expression of selected miRNAs using the 2-ΔΔCt method. RESULTS: We detected statistically significant upregulation of miR-320a-3p, miR-7704, and downregulation of miR-26a-5p in the tumor group compared to the control group. The combination of these miRNAs may have the potential to be utilized as a diagnostic panel for cervical cancer. Using ROC curve analysis, the proposed panel showed 93.33% specificity and 96.97% sensitivity with AUC = 0.985. CONCLUSIONS: We proposed a combination of miR-181a-5p and miR-423-3p as optimal endogenous control and detected potentially significant miRNAs (miR-320a-3p, miR-7704, miR-26a-5p). After further validation of our results, these miRNAs could be used in a diagnostic panel for cervical cancer.
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. . Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660 PubMed DOI
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: Cancer J Clin (2023) 73(1):17–48. doi: 10.3322/caac.21763 PubMed DOI
Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, et al. . Mechanistic role of hpv-associated early proteins in cervical cancer: molecular pathways and targeted therapeutic strategies. Crit Rev Oncology/Hematol (2022) 174:103675. doi: 10.1016/j.critrevonc.2022.103675 PubMed DOI
Nissar S, Sameer AS, Banday MZ. Genetic polymorphisms of essential immune pathogenic response genes and risk of cervical cancer. In: Sameer AS, Banday MZ, Nissar S, editors. Genetic polymorphism and cancer susceptibility. Singapore: Springer Singapore; (2021). p. 191–233.
Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet (2019) 393(10167):169–82. doi: 10.1016/S0140-6736(18)32470-X PubMed DOI
Small W, Jr., Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. . Cervical cancer: a global health crisis. Cancer (2017) 123(13):2404–12. doi: 10.1002/cncr.30667 PubMed DOI
Kang M, Ha SY, Cho HY, Chung DH, Kim NR, An J, et al. . Comparison of papanicolaou smear and human papillomavirus (Hpv) test as cervical screening tools: can we rely on hpv test alone as a screening method? an 11-year retrospective experience at a single institution. J Pathol Trans Med (2020) 54(1):112–8. doi: 10.4132/jptm.2019.11.29 PubMed DOI PMC
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. . Frequent deletions and down-regulation of micro-rna genes Mir15 and Mir16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA (2002) 99(24):15524–9. doi: 10.1073/pnas.242606799 PubMed DOI PMC
Calin GA, Croce CM. Microrna signatures in human cancers. Nat Rev Cancer (2006) 6(11):857–66. doi: 10.1038/nrc1997 PubMed DOI
O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microrna biogenesis, mechanisms of actions, and circulation. Front Endocrinol (2018) 9:402. doi: 10.3389/fendo.2018.00402 PubMed DOI PMC
Griffiths-Jones S. Mirbase: The microrna sequence database. Methods Mol Biol (Clifton, NJ) (2006) 342 :129–38. doi: 10.1385/1-59745-123-1:129 PubMed DOI
Brierley JD, Gospodarowicz MK, Wittekind C. Tnm classification of malignant tumours. Hoboken, New Jersey (United States): John Wiley & Sons; (2017).
Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri. Int J Gynecol Obstet (2018) 143(S2):22–36. doi: 10.1002/ijgo.12611 PubMed DOI
Patil AH, Halushka MK. Mirge3.0: a comprehensive microrna and trf sequencing analysis pipeline. NAR Genom Bioinform (2021) 3(3):lqab068. doi: 10.1093/nargab/lqab068 PubMed DOI PMC
Li Y, Andrade J. Deapp: an interactive web interface for differential expression analysis of next generation sequence data. Source Code Biol Med (2017) 12(1):2. doi: 10.1186/s13029-017-0063-4 PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (2010) 26(1):139–40. doi: 10.1093/bioinformatics/btp616 PubMed DOI PMC
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for rna-seq read counts. Genome Biol (2014) 15(2):R29. doi: 10.1186/gb-2014-15-2-r29 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for rna-seq data with Deseq2. Genome Biol (2014) 15 (12):550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Scientific T. Thermo Fisher connect platform: ThermoFisher scientific (2017). Available at: https://apps.thermofisher.com/apps/spa/.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta C(T)) method. Methods (2001) 25(4):402–8. doi: 10.1006/meth.2001.1262 PubMed DOI
Xie F, Xiao P, Chen D, Xu L, Zhang B. Mirdeepfinder: a mirna analysis tool for deep sequencing of plant small rnas. Plant Mol Biol (2012) 80 (1):75–84. doi: 10.1007/s11103-012-9885-2 PubMed DOI
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper – excel-based tool using pair-wise correlations. Biotechnol Lett (2004) 26(6):509–15. doi: 10.1023/B:BILE.0000019559.84305.47 PubMed DOI
Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-pcr data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res (2004) 64(15):5245–50. doi: 10.1158/0008-5472.can-04-0496 PubMed DOI
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. . Accurate normalization of real-time quantitative rt-pcr data by geometric averaging of multiple internal control genes. Genome Biol (2002) 3(7):research0034. doi: 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC
Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time pcr. BMC Mol Biol (2006) 7(1):33. doi: 10.1186/1471-2199-7-33 PubMed DOI PMC
Schwarzenbach H, da Silva AM, Calin G, Pantel K. Data normalization strategies for microrna quantification. Clin Chem (2015) 61(11):1333–42. doi: 10.1373/clinchem.2015.239459 PubMed DOI PMC
Nilsen A, Jonsson M, Aarnes EK, Kristensen GB, Lyng H. Reference micrornas for rt-qpcr assays in cervical cancer patients and their application to studies of Hpv16 and hypoxia biomarkers. Trans Oncol (2019) 12(3):576–84. doi: 10.1016/j.tranon.2018.12.010 PubMed DOI PMC
Babion I, Snoek BC, van de Wiel MA, Wilting SM, Steenbergen RDM. A strategy to find suitable reference genes for mirna quantitative pcr analysis and its application to cervical specimens. J Mol Diagnostics (2017) 19(5):625–37. doi: 10.1016/j.jmoldx.2017.04.010 PubMed DOI
Babion I, De Strooper LMA, Luttmer R, Bleeker MCG, Meijer C, Heideman DAM, et al. . Complementarity between mirna expression analysis and DNA methylation analysis in hrhpv-positive cervical scrapes for the detection of cervical disease. Epigenetics (2019) 14(6):558–67. doi: 10.1080/15592294.2019.1600390 PubMed DOI PMC
Kaur J, Saul D, Doolittle ML, Rowsey JL, Vos SJ, Farr JN, et al. . Identification of a suitable endogenous control mirna in bone aging and senescence. Gene (2022) 835:146642. doi: 10.1016/j.gene.2022.146642 PubMed DOI PMC
Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, et al. . The small-nucleolar rnas commonly used for microrna normalisation correlate with tumour pathology and prognosis. Br J Cancer (2011) 104(7):1168–77. doi: 10.1038/sj.bjc.6606076 PubMed DOI PMC
Xiang M, Zeng Y, Yang R, Xu H, Chen Z, Zhong J, et al. . U6 is not a suitable endogenous control for the quantification of circulating micrornas. Biochem Biophys Res Commun (2014) 454(1):210–4. doi: 10.1016/j.bbrc.2014.10.064 PubMed DOI
Drobna M, Szarzynska-Zawadzka B, Daca-Roszak P, Kosmalska M, Jaksik R, Witt M, et al. . Identification of endogenous control mirnas for rt-qpcr in T-cell acute lymphoblastic leukemia. Int J Mol Sci (2018) 19(10):17. doi: 10.3390/ijms19102858 PubMed DOI PMC
Wan C, Wen J, Liang X, Xie Q, Wu W, Wu M, et al. . Identification of mir-320 family members as potential diagnostic and prognostic biomarkers in myelodysplastic syndromes. Sci Rep (2021) 11(1):183. doi: 10.1038/s41598-020-80571-z PubMed DOI PMC
Khandelwal A, Sharma U, Barwal TS, Seam RK, Gupta M, Rana MK, et al. . Circulating mir-320a acts as a tumor suppressor and prognostic factor in non-small cell lung cancer. Front Oncol (2021) 11:645475. doi: 10.3389/fonc.2021.645475 PubMed DOI PMC
Xie F, Yuan Y, Xie L, Ran P, Xiang X, Huang Q, et al. . Mirna-320a inhibits tumor proliferation and invasion by targeting c-myc in human hepatocellular carcinoma. Onco Targets Ther (2017) 10:885–94. doi: 10.2147/ott.s122992 PubMed DOI PMC
Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, et al. . Microrna-320a suppresses human colon cancer cell proliferation by directly targeting B-catenin. Biochem Biophys Res Commun (2012) 420(4):787–92. doi: 10.1016/j.bbrc.2012.03.075 PubMed DOI
Xu G, Wu J, Zhou L, Chen B, Sun Z, Zhao F, et al. . Characterization of the small rna transcriptomes of androgen dependent and independent prostate cancer cell line by deep sequencing. PloS One (2010) 5(11):e15519. doi: 10.1371/journal.pone.0015519 PubMed DOI PMC
Zhang L, Chen H, He F, Zhang S, Li A, Zhang A, et al. . Microrna-320a promotes epithelial ovarian cancer cell proliferation and invasion by targeting Rassf8. Front Oncol (2021) 11:581932. doi: 10.3389/fonc.2021.581932 PubMed DOI PMC
Wang W, Yang J, Xiang YY, Pi J, Bian J. Overexpression of hsa-Mir-320 is associated with invasion and metastasis of ovarian cancer. J Cell Biochem (2017) 118(11):3654–61. doi: 10.1002/jcb.26009 PubMed DOI
Zhang T, Zou P, Wang T, Xiang J, Cheng J, Chen D, et al. . Down-regulation of mir-320 associated with cancer progression and cell apoptosis Via targeting mcl-1 in cervical cancer. Tumour Biol J Int Soc Oncodevelopmental Biol Med (2016) 37(7):8931–40. doi: 10.1007/s13277-015-4771-6 PubMed DOI
Hong H, Zhu H, Zhao S, Wang K, Zhang N, Tian Y, et al. . The novel Circclk3/Mir-320a/Foxm1 axis promotes cervical cancer progression. Cell Death Dis (2019) 10(12):950. doi: 10.1038/s41419-019-2183-z PubMed DOI PMC
Liang Y, Li S, Tang L. Microrna 320, an anti-oncogene target mirna for cancer therapy. Biomedicines (2021) 9(6):591. doi: 10.3390/biomedicines9060591 PubMed DOI PMC
Mahlab-Aviv S, Zohar K, Cohen Y, Peretz AR, Eliyahu T, Linial M, et al. . Spliceosome-associated micrornas signify breast cancer cells and portray potential novel nuclear targets. Int J Mol Sci (2020) 21(21):8132. doi: 10.3390/ijms21218132 PubMed DOI PMC
Zheng Y, Song A, Zhou Y, Zhong Y, Zhang W, Wang C, et al. . Identification of extracellular vesicles-transported mirnas in erlotinib-resistant head and neck squamous cell carcinoma. J Cell Commun Signal (2020) 14(4):389–402. doi: 10.1007/s12079-020-00546-7 PubMed DOI PMC
Wang L, Li M, Chen F. Microrna-26a represses pancreatic cancer cell malignant behaviors by targeting E2f7. Discov Oncol (2021) 12(1):55. doi: 10.1007/s12672-021-00448-z PubMed DOI PMC
Chung Y-H, Cheng Y-T, Kao Y-H, Tsai W-C, Huang G-K, Chen Y-T, et al. . Mir-26a-5p as a useful therapeutic target for upper tract urothelial carcinoma by regulating Wnt5a/B-catenin signaling. Sci Rep (2022) 12(1):6955. doi: 10.1038/s41598-022-08091-6 PubMed DOI PMC
Gao S, Bian T, Su M, Liu Y, Zhang Y. Mir−26a inhibits ovarian cancer cell proliferation, migration and invasion by targeting Tcf12. Oncol Rep (2020) 43(1):368–74. doi: 10.3892/or.2019.7417 PubMed DOI
Dong J, Sui L, Wang Q, Chen M, Sun H. Microrna-26a inhibits cell proliferation and invasion of cervical cancer cells by targeting protein tyrosine phosphatase type iva 1. Mol Med Rep (2014) 10(3):1426–32. doi: 10.3892/mmr.2014.2335 PubMed DOI
Li M, Xiao Y, Liu M, Ning Q, Xiang Z, Zheng X, et al. . Mir-26a-5p regulates proliferation, apoptosis, migration and invasion Via inhibiting hydroxysteroid dehydrogenase like-2 in cervical cancer cell. BMC Cancer (2022) 22(1):876. doi: 10.1186/s12885-022-09970-x PubMed DOI PMC