Temperature- and Diet-Induced Plasticity of Growth and Digestive Enzymes Activity in Spongy Moth Larvae
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37238690
PubMed Central
PMC10216847
DOI
10.3390/biom13050821
PII: biom13050821
Knihovny.cz E-zdroje
- Klíčová slova
- Lymantria dispar, development duration, dietary proteins and carbohydrates, digestive enzymes, gypsy moth, larval mass, temperature,
- MeSH
- dieta MeSH
- larva fyziologie MeSH
- můry * MeSH
- proteasy MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteasy MeSH
Temperature and food quality are the most important environmental factors determining the performance of herbivorous insects. The objective of our study was to evaluate the responses of the spongy moth (formerly known as the gypsy moth) [Lymantria dispar L. (Lepidoptera: Erebidae)] to simultaneous variation in these two factors. From hatching to the fourth instar, larvae were exposed to three temperatures (19 °C, 23 °C, and 28 °C) and fed four artificial diets that differed in protein (P) and carbohydrate (C) content. Within each temperature regime, the effects of the nutrient content (P+C) and ratio (P:C) on development duration, larval mass, growth rate, and activities of digestive proteases, carbohydrases, and lipase were examined. It was found that temperature and food quality had a significant effect on the fitness-related traits and digestive physiology of the larvae. The greatest mass and highest growth rate were obtained at 28 °C on a high-protein low-carbohydrate diet. A homeostatic increase in activity was observed for total protease, trypsin, and amylase in response to low substrate levels in the diet. A significant modulation of overall enzyme activities in response to 28 °C was detected only with a low diet quality. A decrease in the nutrient content and P:C ratio only affected the coordination of enzyme activities at 28 °C, as indicated by the significantly altered correlation matrices. Multiple linear regression analysis showed that variation in fitness traits in response to different rearing conditions could be explained by variation in digestion. Our results contribute to the understanding of the role of digestive enzymes in post-ingestive nutrient balancing.
Zobrazit více v PubMed
Clissold F.J., Simpson S.J. Temperature, food quality and life history traits of herbivorous insects. Curr. Opin. Insect Sci. 2015;11:63–70. doi: 10.1016/j.cois.2015.10.011. PubMed DOI
Abram P.K., Boivin G., Moiroux J., Brodeur J. Behavioural effects of temperature on ectothermic animals: Unifying thermal physiology and behavioural plasticity. Biol. Rev. 2017;92:1859–1876. doi: 10.1111/brv.12312. PubMed DOI
González-Tokman D., Córdoba-Aguilar A., Dáttilo W., Lira-Noriega A., Sánchez-Guillén R.A., Villalobos F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020;95:802–821. doi: 10.1111/brv.12588. PubMed DOI
Lee K.P., Jang T., Rho M.S. Recent Trends in Integrative Insect Nutrition: A Nutritional Geometry Perspective. Korean J. Appl. Entomol. 2022;61:129–142.
Chown S.L., Nicolson S. Insect Physiological Ecology: Mechanisms and Patterns. online ed. Oxford University Press; Oxford, UK: 2004.
Milanović S., Janković-Tomanić M., Kostić I., Kostić M., Morina F., Živanović B., Lazarević J. Behavioural and physiological plasticity of gypsy moth larvae to host plant switching. Entomol. Exp. Appl. 2016;158:152–162. doi: 10.1111/eea.12388. DOI
Strilbytska O., Velianyk V., Burdyliuk N., Yurkevych I.S., Vaiserman A., Storey K.B., Pospisilik A., Lushchak O. Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in drosophila. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020;241:110622. doi: 10.1016/j.cbpa.2019.110622. PubMed DOI
Ilijin L., Grčić A., Mrdaković M., Vlahović M., Filipović A., Matić D., Mataruga V.P. Tissue-specific responses of Lymantria dispar L. (Lepidoptera: Erebidae) larvae from unpolluted and polluted forests to thermal stress. J. Therm. Biol. 2021;96:102836. doi: 10.1016/j.jtherbio.2021.102836. PubMed DOI
Stockhoff B.A. Ontogenetic change in dietary selection for protein and lipid by gypsy moth larvae. J. Insect Physiol. 1993;39:677–686. doi: 10.1016/0022-1910(93)90073-Z. DOI
Andersen L.H., Kristensen T.N., Loeschcke V., Toft S., Mayntz D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 2010;56:336–340. doi: 10.1016/j.jinsphys.2009.11.006. PubMed DOI
Lee K.P., Kim J.S., Min K.J. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 2013;86:987–992. doi: 10.1016/j.anbehav.2013.08.018. DOI
Pascacio-Villafán C., Williams T., Birke A., Aluja M. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect. Sci. Rep. 2016;6:29413. doi: 10.1038/srep29413. PubMed DOI PMC
Rendon D., Walton V., Tait G., Buser J., Lemos Souza I., Wallingford A., Loeb G., Lee J. Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecol. Evol. 2019;9:2615–2628. doi: 10.1002/ece3.4928. PubMed DOI PMC
Little C.M., Chapman T.W., Hillier N.K. Plasticity is key to success of Drosophila suzukii (Diptera: Drosophilidae) invasion. J. Insect Sci. 2020;20:5. doi: 10.1093/jisesa/ieaa034. PubMed DOI PMC
Strilbytska O., Strutynska T., Semaniuk U., Burdyliyk N., Bubalo V., Lushchak O. Dietary sucrose determines stress resistance, oxidative damages, and antioxidant defense system in Drosophila. Scientifica. 2022;2022:7262342. doi: 10.1155/2022/7262342. PubMed DOI PMC
Simpson S.J., Raubenheimer D. The geometric analysis of nutrient–allelochemical interactions: A case study using locusts. Ecology. 2001;82:422–439.
Saeed S., Sayyed A.H., Ahmad I. Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae) J. Pest. Sci. 2010;83:165–172. doi: 10.1007/s10340-009-0283-8. DOI
Lee K.P. Dietary protein: Carbohydrate balance is a critical modulator of lifespan and reproduction in Drosophila melanogaster: A test using a chemically defined diet. J. Insect Physiol. 2015;75:12–19. doi: 10.1016/j.jinsphys.2015.02.007. PubMed DOI
Milanović S., Lazarević J., Popović Z., Miletić Z., Kostić M., Radulović Z., Karadžić D., Vuleta A. Preference and performance of the larvae of Lymantria dispar (Lepidoptera: Lymantriidae) on three species of European oaks. Eur. J. Entomol. 2014;111:371–378. doi: 10.14411/eje.2014.039. DOI
Perkovich C., Ward D. Protein: Carbohydrate ratios in the diet of gypsy moth Lymantria dispar affect its ability to tolerate tannins. J. Chem. Ecol. 2020;46:299–307. doi: 10.1007/s10886-020-01161-x. PubMed DOI
Carey M.R., Archer C.R., Rapkin J., Castledine M., Jensen K., House C.M., Hosken D.J., Hunt J. Mapping sex differences in the effects of protein and carbohydrates on lifespan and reproduction in Drosophila melanogaster: Is measuring nutrient intake essential? Biogerontology. 2022;23:129–144. doi: 10.1007/s10522-022-09953-2. PubMed DOI PMC
Shu R., Uy L., Wong A.C.N. Nutritional phenotype underlines the performance trade-offs of Drosophila suzukii on different fruit diets. Curr. Res. Insect Sci. 2022;2:100026. doi: 10.1016/j.cris.2021.100026. PubMed DOI PMC
Simpson S.J., Sibly R.M., Lee K.P., Behmer S.T., Raubenheimer D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 2004;68:1299–1311. doi: 10.1016/j.anbehav.2004.03.003. DOI
Deans C.A., Sword G.A., Behmer S.T. Revisiting macronutrient regulation in the polyphagous herbivore Helicoverpa zea (Lepidoptera: Noctuidae): New insights via nutritional geometry. J. Insect Physiol. 2015;81:21–27. doi: 10.1016/j.jinsphys.2015.06.015. PubMed DOI
Kim K., Jang T., Min K.J., Lee K.P. Effects of dietary protein: Carbohydrate balance on life-history traits in six laboratory strains of Drosophila melanogaster. Entomol. Exp. Appl. 2020;168:482–491. doi: 10.1111/eea.12855. DOI
Rho M.S., Lee K.P. Behavioural and physiological regulation of protein and carbohydrates in mealworm larvae: A geometric analysis. J. Insect Physiol. 2022;136:104329. doi: 10.1016/j.jinsphys.2021.104329. PubMed DOI
Jonas J.L., Joern A. Dietary selection and nutritional regulation in a common mixed-feeding insect herbivore. Entomol. Exp. Appl. 2013;148:20–26. doi: 10.1111/eea.12065. DOI
Le Gall M., Behmer S.T. Effects of protein and carbohydrate on an insect herbivore: The vista from a fitness landscape. Integr. Comp. Biol. 2014;54:942–954. doi: 10.1093/icb/icu102. PubMed DOI
Strilbytska O., Semaniuk U., Bubalo V., Storey K.B., Lushchak O. Dietary choice reshapes metabolism in Drosophila by affecting consumption of macronutrients. Biomolecules. 2022;12:1201. doi: 10.3390/biom12091201. PubMed DOI PMC
Keaton Wilson J., Ruiz L., Davidowitz G. Dietary protein and carbohydrates affect immune function and performance in a specialist herbivore insect (Manduca sexta) Physiol. Biochem. Zool. 2019;92:58–70. doi: 10.1086/701196. PubMed DOI
Deans C.A., Sword G.A., Vogel H., Behmer S.T. Quantity versus quality: Effects of diet protein-carbohydrate ratios and amounts on insect herbivore gene expression. Insect Biochem. Mol. Biol. 2022;145:103773. doi: 10.1016/j.ibmb.2022.103773. PubMed DOI
Sun S.L., Abudisilimu N., Yi H., Li S., Liu T.X., Jing X. Understanding nutritive need in Harmonia axyridis larvae: Insights from nutritional geometry. Insect Sci. 2022;29:1433–1444. doi: 10.1111/1744-7917.13009. PubMed DOI
Behmer S.T. Insect herbivore nutrient regulation. Ann. Rev. Entomol. 2009;54:165–187. doi: 10.1146/annurev.ento.54.110807.090537. PubMed DOI
Waldbauer G.P., Friedman S. Self-selection of optimal diets by insects. Ann. Rev. Entomol. 1991;3:43–63. doi: 10.1146/annurev.en.36.010191.000355. DOI
Hägele B.F., Rowell-Rahier M. Dietary mixing in three generalist herbivores: Nutrient complementation or toxin dilution? Oecologia. 1999;119:521–533. doi: 10.1007/s004420050815. PubMed DOI
Singer M.S. Determinants of polyphagy by a woolly bear caterpillar: A test of the physiological efficiency hypothesis. Oikos. 2001;93:194–204. doi: 10.1034/j.1600-0706.2001.930203.x. DOI
Karban R., Karban C., Huntzinger M., Pearse I.A.N., Crutsinger G. Diet mixing enhances the performance of a generalist caterpillar, Platyprepia virginalis. Ecol. Entomol. 2010;35:92–99. doi: 10.1111/j.1365-2311.2009.01162.x. DOI
Bede J.C., McNeil J.N., Tobe S.S. The role of neuropeptides in caterpillar nutritional ecology. Peptides. 2007;28:185–196. PubMed
Stockhoff B.A. Diet-switching by gypsy moth: Effects of diet nitrogen history vs. switching on growth, consumption, and food utilization. Entomol. Exp. Appl. 1992;64:225–238.
Thompson S.N., Borchardt D.B., Wang L.W. Dietary nutrient levels regulate protein and carbohydrate intake, gluconeogenic/glycolytic flux and blood trehalose level in the insect Manduca sexta L. J. Comp. Physiol. B. 2003;173:149–163. doi: 10.1007/s00360-002-0322-8. PubMed DOI
Roeder K.A., Behmer S.T. Lifetime consequences of food protein-carbohydrate content for an insect herbivore. Funct. Ecol. 2014;28:1135–1143.
Clissold F.J., Tedder B.J., Conigrave A.D., Simpson S.J. The gastrointestinal tract as a nutrient-balancing organ. Proc. Royal Soc. B Biol. Sci. 2010;277:1751–1759. doi: 10.1098/rspb.2009.2045. PubMed DOI PMC
Van Broekhoven S., Oonincx D.G., Van Huis A., Van Loon J.J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015;73:1–10. doi: 10.1016/j.jinsphys.2014.12.005. PubMed DOI
Wang P., Vassão D.G., Raguschke B., Furlong M.J., Zalucki M.P. Balancing nutrients in a toxic environment: The challenge of eating. Insect Sci. 2022;29:289–303. doi: 10.1111/1744-7917.12923. PubMed DOI
Kingsolver J.G., Woods H.A. Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiol. Zool. 1997;70:631–638. doi: 10.1086/515872. PubMed DOI
Overgaard J., Tomčala A., Sørensen J.G., Holmstrup M., Krogh P.H., Šimek P., Koštál V. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. J. Insect Physiol. 2008;54:619–629. doi: 10.1016/j.jinsphys.2007.12.011. PubMed DOI
Catalán T.P., Wozniak A., Niemeyer H.M., Kalergis A.M., Bozinovic F. Interplay between thermal and immune ecology: Effect of environmental temperature on insect immune response and energetic costs after an immune challenge. J. Insect Physiol. 2012;58:310–317. doi: 10.1016/j.jinsphys.2011.10.001. PubMed DOI
Wojda I. Temperature stress and insect immunity. J. Therm. Biol. 2017;68:96–103. doi: 10.1016/j.jtherbio.2016.12.002. PubMed DOI
Kobori Y., Hanboonsong Y. Effect of temperature on the development and reproduction of the sugarcane white leaf insect vector, Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae) J. Asia-Pac. Entomol. 2017;20:281–284. doi: 10.1016/j.aspen.2017.01.011. DOI
Bjørge J.D., Overgaard J., Malte H., Gianotten N., Heckmann L.H. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor. J. Insect Physiol. 2018;107:89–96. doi: 10.1016/j.jinsphys.2018.02.010. PubMed DOI
Du Plessis H., Schlemmer M.L., Van den Berg J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae) Insects. 2020;11:228. doi: 10.3390/insects11040228. PubMed DOI PMC
Eberle S., Schaden L.M., Tintner J., Stauffer C., Schebeck M. Effect of temperature and photoperiod on development, survival, and growth rate of mealworms, Tenebrio molitor. Insects. 2022;13:321. doi: 10.3390/insects13040321. PubMed DOI PMC
Neven L.G. Physiological responses of insects to heat. Postharvest Biol. Tec. 2000;21:103–111. doi: 10.1016/S0925-5214(00)00169-1. DOI
Zhao L., Jones W.A. Expression of heat shock protein genes in insect stress responses. Invertebr. Surviv. J. 2012;9:93–101.
Farahani S., Bandani A.R., Alizadeh H., Goldansaz S.H., Whyard S. Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) PLoS ONE. 2020;15:e0228104. doi: 10.1371/journal.pone.0228104. PubMed DOI PMC
Denlinger D.L., Yocum G.D. Physiology of heat sensitivity. In: Hallman G.J., Denlinger D.L., editors. Temperature Sensitivity in Insects and Application in Integrated Pest Management. 1st ed. CRC Press; Boca Raton, FL, USA: 1999. pp. 7–53.
Zhang S., Fu W., Li N., Zhang F., Liu T.X. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. J. Insect Physiol. 2015;73:47–52. doi: 10.1016/j.jinsphys.2015.01.004. PubMed DOI
Klepsatel P., Gáliková M., Xu Y., Kühnlein R.P. Thermal stress depletes energy reserves in Drosophila. Sci. Rep. 2016;6:33667. doi: 10.1038/srep33667. PubMed DOI PMC
Stillwell R.C., Wallin W.G., Hitchcock L.J., Fox C.W. Phenotypic plasticity in a complex world: Interactive effects of food and temperature on fitness components of a seed beetle. Oecologia. 2007;153:309–321. doi: 10.1007/s00442-007-0748-5. PubMed DOI
Cross W.F., Hood J.M., Benstead J.P., Huryn A.D., Nelson D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Chang. Biol. 2015;21:1025–1040. doi: 10.1111/gcb.12809. PubMed DOI
Kingsolver J.G., Shlichta J.G., Ragland G.J., Massie K.R. Thermal reaction norms for caterpillar growth depend on diet. Evol. Ecol. Res. 2006;8:703–715.
Lee K.P., Roh C. Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomol. Exp. Appl. 2010;136:151–163. doi: 10.1111/j.1570-7458.2010.01018.x. DOI
Jang T., Rho M.S., Koh S.H., Lee K.P. Host–plant quality alters herbivore responses to temperature: A case study using the generalist Hyphantria cunea. Entomol. Exp. Appl. 2015;154:120–130. doi: 10.1111/eea.12261. DOI
Lemoine N.P., Shantz A.A. Increased temperature causes protein limitation by reducing the efficiency of nitrogen digestion in the ectothermic herbivore Spodoptera exigua. Physiol. Entomol. 2016;41:143–151. doi: 10.1111/phen.12138. DOI
Kutz T.C., Sgrò C.M., Mirth C.K. Interacting with change: Diet mediates how larvae respond to their thermal environment. Funct. Ecol. 2019;33:1940–1951. doi: 10.1111/1365-2435.13414. DOI
Singh P., van Bergen E., Brattström O., Osbaldeston D., Brakefield P.M., Oostra V. Complex multi-trait responses to multivariate environmental cues in a seasonal butterfly. Evol. Ecol. 2020;34:713–734. doi: 10.1007/s10682-020-10062-0. DOI
Quispe-Tarqui R., Yujra Pari J., Callizaya Condori F., Rebaudo F. The effect of diet interacting with temperature on the development rate of a Noctuidae quinoa pest. Environ. Entomol. 2021;50:685–691. doi: 10.1093/ee/nvab014. PubMed DOI
Chakraborty A., Walter G.M., Monro K., Alves A.N., Mirth C.K., Sgrò C.M. Within-population variation in body size plasticity in response to combined nutritional and thermal stress is partially independent from variation in development time. J. Evol. Biol. 2023;36:264–279. doi: 10.1111/jeb.14099. PubMed DOI PMC
Boukouvala M.C., Kavallieratos N.G., Skourti A., Pons X., Alonso C.L., Eizaguirre M., Fernandez E.B., Solera E.D., Fita S., Bohinc T., et al. Lymantria dispar (L.) (Lepidoptera: Erebidae): Current status of biology, ecology, and management in Europe with notes from North America. Insects. 2022;13:854. doi: 10.3390/insects13090854. PubMed DOI PMC
Lindroth R.L., Klein K.A., Hemming J.D., Feuker A.M. Variation in temperature and dietary nitrogen affect performance of the gypsy moth (Lymantria dispar L.) Physiol. Entomol. 1997;22:55–64. doi: 10.1111/j.1365-3032.1997.tb01140.x. DOI
Janković-Tomanić M., Lazarević J. Effects of temperature and dietary nitrogen on genetic variation and covariation in gypsy moth larval performance traits. Arch. Biol. Sci. 2012;64:1109–1116. doi: 10.2298/ABS1203109J. DOI
Sostak B.E. Graduate Thesis. Virginia Commonwealth University; Richmond, VA, USA: 2015. Effects of Constant vs. Fluctuating Temperatures on Performance and Life History of the Herbivorous Pest Lymantria dispar (Lepidoptera: Eribidae)
O’Dell T.M., Butt C.A., Bridgeforth A.W. Lymantria dispar. In: Singh P., Moore R.F., editors. Handbook of Insect Rearing. Elsevier Science Publishing; New York, NY, USA: 1985. pp. 355–367.
Stockhoff B.A. Starvation resistance of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae): Tradeoffs among growth, body size, and survival. Oecologia. 1991;88:422–429. doi: 10.1007/BF00317588. PubMed DOI
Rizzello C.G., Nionelli L., Coda R., De Angelis M., Gobbetti M. Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem. 2010;119:1079–1089. doi: 10.1016/j.foodchem.2009.08.016. DOI
De Vasconcelos M.C.B.M., Bennett R., Castro C.A.B.B., Cardoso P., Saavedra M.J., Rosa E.A. Study of composition, stabilization and processing of wheat germ and maize industrial by-products. Ind. Crops Prod. 2013;42:292–298. doi: 10.1016/j.indcrop.2012.06.007. DOI
Bradford M.M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Kunitz M. Crystalline soybean trypsin inhibitor. II. General properties. J. Gen. Physiol. 1947;30:291–310. doi: 10.1085/jgp.30.4.291. PubMed DOI PMC
Erlanger B.F., Kokowsky N., Cohen W. The preparation and properties of two new chromogenic substrates for trypsin. Arch. Biochem. Biophys. 1961;95:271–278. doi: 10.1016/0003-9861(61)90145-X. PubMed DOI
Valaitis A.P. Gypsy moth midgut proteinases: Purification and characterization of luminal trypsin, elastase and the brush border membrane leucine aminopeptidase. Insect Biochem. Mol. Biol. 1995;25:139–149. doi: 10.1016/0965-1748(94)00033-E. PubMed DOI
Bernfeld P. Amylases, alpha and beta. In: Colowick P.C., Kaplan O.N., editors. Methods in Enzymology. Volume 1. Academic Press; New York, NY, USA: 1955. pp. 1949–1958. DOI
Doane W.W. Quantification of amylases in Drosophila separated by acrylamide gel electrophoresis. J. Exp. Zool. 1967;164:363–377. doi: 10.1002/jez.1401640307. PubMed DOI
Lazarević J., Perić-Mataruga V., Leković S., Nenadović V. The properties of a-amylase from the midgut of Lymantria dispar larvae. In: Adamović Ž., editor. The Gypsy Moth Outbreaks in Serbia. Entomological Society of Serbia; Belgrade, Serbia: 1998. pp. 95–114.
Baker J.E. Properties of glycosidases from the maize weevil, Sitophilus zeamais. Insect Biochem. 1991;21:615–621. doi: 10.1016/0020-1790(91)90031-9. DOI
Arreguin-Espinosa R., Arreguin G., Gonsales C. Purification andproperties of a lipase from Cephaloilea presignis (Coleoptera, Chrysomelidae) Biotechol. Appl. Biochem. 2000;31:239–244. doi: 10.1042/BA19990088. PubMed DOI
Mrdaković M., Lazarević J., Perić-Mataruga V., Ilijin L., Vlahović M. Partial characterization of a lipase from gypsy moth (Lymantria dispar L.) larval midgut. Folia Biol. 2008;56:103–110. doi: 10.3409/fb56_1-2.103-110. PubMed DOI
Barbosa P., Krischik V.A. Influence of alkaloids on feeding preference of eastern deciduous forest trees by the gypsy moth Lymantria dispar. Am. Nat. 1987;130:53–69. doi: 10.1086/284697. DOI
Kinney K.K., Lindroth R.L., Jung S.M., Nordheim E.V. Effects of CO2 and NO3− availability on deciduous trees: Phytochemistry and insect performance. Ecology. 1997;78:215–230.
Barbehenn R.V., Kapila M., Kileen S., Nusbaum C.P. Acquiring nutrients from tree leaves: Effects of leaf maturity and development type on a generalist caterpillar. Oecologia. 2017;184:59–73. doi: 10.1007/s00442-017-3854-z. PubMed DOI
Rossiter M., Schultz J.C., Baldwin I.T. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology. 1988;69:267–277. doi: 10.2307/1943182. DOI
Osier T.L., Lindroth R.L. Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J. Chem. Ecol. 2001;27:1289–1313. doi: 10.1023/A:1010352307301. PubMed DOI
Ruhnke H., Schädler M., Klotz S., Matthies D., Brandl R. Variability in leaf traits, insect herbivory and herbivore performance within and among individuals of four broad-leaved tree species. Basic. Appl. Ecol. 2009;10:726–736. doi: 10.1016/j.baae.2009.06.006. DOI
Barbehenn R.V., Niewiadomski J., Pecci C., Salminen J.P. Physiological benefits of feeding in the spring by Lymantria dispar caterpillars on red oak and sugar maple leaves: Nutrition versus oxidative stress. Chemoecology. 2013;23:59–70. doi: 10.1007/s00049-012-0119-5. DOI
Barbehenn R.V., Haugberg N., Kochmanski J., Menachem B., Miller C. Physiological factors affecting the rapid decrease in protein assimilation efficiency by a caterpillar on newly-mature tree leaves. Physiol. Entomol. 2014;39:69–79. doi: 10.1111/phen.12049. DOI
Barbehenn R.V., Haugberg N., Kochmanski J., Menachem B. Effects of leaf maturity and wind stress on the nutrition of the generalist caterpillar Lymantria dispar feeding on poplar. Physiol. Entomol. 2015;40:212–222. doi: 10.1111/phen.12105. DOI
Inoue M.N., Suzuki-Ohno Y., Haga Y., Aarai H., Sano T., Martemyanov V.V., Kunimi Y. Population dynamics and geographical distribution of the gypsy moth, Lymantria dispar, in Japan. Forest Ecol. Manag. 2019;434:154–164. doi: 10.1016/j.foreco.2018.12.022. DOI
Williams R.S., Norby R.J., Lincoln D.E. Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Glob. Chang. Biol. 2000;6:685–695. doi: 10.1046/j.1365-2486.2000.00343.x. DOI
Williams R.S., Lincoln D.E., Norby R.J. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia. 2003;137:114–122. doi: 10.1007/s00442-003-1327-z. PubMed DOI
Thompson L.M., Faske T.M., Banahene N., Grim D., Agosta S.J., Parry D., Tobin P.C., Johnson D.M., Grayson K.L. Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth Lymantria dispar (L.), an expanding invasive species. Physiol. Entomol. 2017;42:181–190. doi: 10.1111/phen.12190. DOI
Hunter A.F., Lechowicz M.J. Foliage quality changes during canopy development of some northern hardwood trees. Oecologia. 1992;89:316–323. doi: 10.1007/BF00317408. PubMed DOI
Foster J.R., Townsend P.A., Mladenoff D.J. Mapping asynchrony between gypsy moth egg-hatch and forest leaf-out: Putting the phenological window hypothesis in a spatial context. For. Ecol. Manag. 2013;287:67–76. doi: 10.1016/j.foreco.2012.09.006. DOI
Martemyanov V.V., Pavlushin S.V., Dubovskiy I.M., Yushkova Y.V., Morosov S.V., Chernyak E.I., Efimov V.M., Ruuhola T., Glupov V.V. Asynchrony between host plant and insects-defoliator within a tritrophic system: The role of herbivore innate immunity. PLoS ONE. 2015;10:e0130988. doi: 10.1371/journal.pone.0130988. PubMed DOI PMC
Martemyanov V.V., Belousova I.A., Pavlushin S.V., Dubovskiy I.M., Ershov N.I., Alikina T.Y., Kabilov M.R., Glupov V.V. Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to Bacillus thuringiensis. Ecol. Evol. 2016;6:7298–7310. doi: 10.1002/ece3.2460. PubMed DOI PMC
Tobin P.C., Gray D.R., Liebhold A.M. Supraoptimal temperatures influence the range dynamics of a non-native insect. Divers. Distrib. 2014;20:813–823. doi: 10.1111/ddi.12197. DOI
Ponomarev V.I., Klobukov G.I., Napalkova V.V., Akhanaev Y.B., Pavlushin S.V., Yakimova M.E., Subbotina A.O., Picq S., Cusson M., Martemyanov V.V. Phenological features of the spongy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), in the northernmost portions of its Eurasian range. Insects. 2023;14:276. doi: 10.3390/insects14030276. PubMed DOI PMC
Melin M., Viiri H., Tikkanen O.P., Elfving R., Neuvonen S. From a rare inhabitant into a potential pest–status of the nun moth in Finland based on pheromone trapping. Silva Fenn. 2020;54:10262. doi: 10.14214/sf.10262. DOI
Keena M.A., Richards J.Y. Comparison of survival and development of gypsy moth Lymantria dispar L.(Lepidoptera: Erebidae) populations from different geographic areas on North American conifers. Insects. 2020;11:260. doi: 10.3390/insects11040260. PubMed DOI PMC
Jahant-Miller C., Miller R., Parry D. Size-dependent flight capacity and propensity in a range-expanding invasive insect. Insect Sci. 2022;29:879–888. doi: 10.1111/1744-7917.12950. PubMed DOI
Soukhovolsky V., Tarasova O., Pavlushin S., Osokina E., Akhanaev Y., Kovalev A., Martemyanov V. Economics of a feeding budget: A case of diversity of host plants for Lymantria dispar L.(Lepidoptera) feeding on leaves and needles. Diversity. 2023;15:102. doi: 10.3390/d15010102. DOI
Knapp R., Casey T.M. Thermal ecology, behavior, and growth of gypsy moth and eastern tent caterpillars. Ecology. 1986;67:598–608. doi: 10.2307/1937683. DOI
Keena M.A., Shi J. Effects of temperature on first instar Lymantria (Lepidoptera: Erebidae) survival and development with and without food. Environ. Entomol. 2019;48:655–666. doi: 10.1093/ee/nvz028. PubMed DOI
Gibbs P.M. M.S. Thesis. Virginia Commonwealth University; Richmond, VA, USA: 2020. Evidence of Local Adaptation to Climate in an Invasive Ectotherm: A Study on the Eurasian Gypsy Moth (Lymantria dispar) in North America.
Maksimović M. Experimental Researches on the Influence of Temperature upon the Development and the Dynamics of Population of the Gypsy Moth (Liparis dispar L.) Biological Institute of N. R. Serbia; Belgrade, Serbia: 1958. p. 115.
Logan J.A., Casagrande R.A., Liebhold A.M. Modeling environment for simulation of gypsy moth (Lepidoptera: Lymantriidae) larval phenology. Environ. Entomol. 1991;20:1516–1525. doi: 10.1093/ee/20.6.1516. DOI
Karimi-Malati A., Fathipour Y., Talebi A.A. Development response of Spodoptera exigua to eight constant temperatures: Linear and nonlinear modeling. J. Asia-Pac. Entomol. 2014;17:349–354. doi: 10.1016/j.aspen.2014.03.002. DOI
Limbu S., Keena M., Chen F., Cook G., Nadel H., Hoover K. Effects of temperature on development of Lymantria dispar asiatica and Lymantria dispar japonica (Lepidoptera: Erebidae) Environ. Entomol. 2017;46:1012–1023. doi: 10.1093/ee/nvx111. PubMed DOI
Tammaru T., Ruohomäki K., Montola M. Crowding-induced plasticity in Epirrita autumnata (Lepidoptera: Geometridae): Weak evidence of specific modifications in reaction norms. Oikos. 2000;90:171–181. doi: 10.1034/j.1600-0706.2000.900117.x. DOI
Zhang B., Helen H.S., Wang J.J., Huai L.I.U. Performance and enzyme activity of beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) under various nutritional conditions. Agric. Sci. China. 2011;10:737–746. doi: 10.1016/S1671-2927(11)60057-6. DOI
Hättenschwiler S., Schafellner C. Gypsy moth feeding in the canopy of a CO2-enriched mature forest. Glob. Chang. Biol. 2004;10:1899–1908. doi: 10.1111/j.1365-2486.2004.00856.x. DOI
Couture J.J., Meehan T.D., Lindroth R.L. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Oecologia. 2012;168:863–876. doi: 10.1007/s00442-011-2139-1. PubMed DOI
Keating S.T., Yendol W.G., Schultz J.C. Relationship between susceptibility of gypsy moth larvae (Lepidoptera: Lymantriidae) to a baculovirus and host plant foliage constituents. Environ. Entomol. 1988;17:952–958. doi: 10.1093/ee/17.6.952. DOI
Stockhoff B.A. Protein intake by gypsy moth larvae on homogeneous and heterogeneous diets. Physiol. Entomol. 1993;18:409–419. doi: 10.1111/j.1365-3032.1993.tb00615.x. DOI
Barbehenn R.V., Knister J., Marsik F., Jahant-Miller C., Nham W. Nutrients are assimilated efficiently by Lymantria dispar caterpillars from the mature leaves of trees in the Salicaceae. Physiol. Entomol. 2015;40:72–81. doi: 10.1111/phen.12087. DOI
Lee K.P., Jang T., Ravzanaadii N., Rho M.S. Macronutrient balance modulates the temperature-size rule in an ectotherm. Am. Nat. 2015;186:212–222. doi: 10.1086/682072. PubMed DOI
Terra W.R., Ferreira C. Biochemistry and molecular biology of digestion. In: Gilbert L.I., editor. Insect Molecular Biology and Biochemistry. 1st ed. Academic Press; San Diego, CA, USA: 2012. pp. 365–418.
Zeng J., Shi Z., Shi J., Guo J., Zhang G., Zhang J. Ambient temperature-mediated enzymic activities and intestinal microflora in Lymantria dispar larvae. Arch. Insect Biochem. Physiol. 2019;102:e21597. doi: 10.1002/arch.21597. PubMed DOI
Weidlich S., Huster J., Hoffmann K.H., Woodring J. Environmental control of trypsin secretion in the midgut of the two-spotted field cricket, Gryllus bimaculatus. J. Insect Physiol. 2012;58:1477–1484. doi: 10.1016/j.jinsphys.2012.08.017. PubMed DOI
Weidlich S. Doctoral Dissertation. Universitaet Bayreuth; Bayreuth, Germany: 2013. The Regulation of Digestive Enzyme Release in the Two-Spotted Field Cricket Gryllus bimaculatus (de Geer): Effects of Endogenous and Environmental Factors.
Akbar S.M., Pavani T., Nagaraja T., Sharma H.C. Influence of CO2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera) Environ. Entomol. 2016;45:229–236. doi: 10.1093/ee/nvv144. PubMed DOI
Ilijin L., Grčić A., Mrdaković M., Vlahović M., Todorović D., Filipović A., Matić D., Perić Mataruga V. The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae. Sci. Rep. 2022;12:21858. doi: 10.1038/s41598-022-26506-2. PubMed DOI PMC
Karasov W.H., Douglas A.E. Comparative digestive physiology. Compr. Physiol. 2013;3:741. PubMed PMC
Lazarević J., Janković-Tomanić M. Dietary and phylogenetic correlates of digestive trypsin activity in insect pests. Entomol. Exp. Appl. 2015;157:123–151. doi: 10.1111/eea.12349. DOI
Huang J.H., Jing X., Douglas A.E. The multi-tasking gut epithelium of insects. Insect Biochem. Mol. Biol. 2015;67:15–20. doi: 10.1016/j.ibmb.2015.05.004. PubMed DOI PMC
Bonelli M., Bruno D., Brilli M., Gianfranceschi N., Tian L., Tettamanti G., Caccia S., Casartelli M. Black soldier fly larvae adapt to different food substrates through morphological and functional responses of the midgut. Int. J. Mol. Sci. 2020;21:4955. doi: 10.3390/ijms21144955. PubMed DOI PMC
Lazarević J.M., Perić-Mataruga V.D. Nutritive stress effects on growth and digestive physiology of Lymantria dispar larvae. Jugosl. Med. Biohemija. 2003;22:53–59. doi: 10.2298/JMH0301053L. DOI
Milanović S., Miletić Z., Marković Č., Šešlija Jovanović D., Trailović Z., Jankovský L., Lazarević J. Suitability of turkey oak, european beech, and hornbeam to gypsy moth feeding. Forests. 2022;13:1006. doi: 10.3390/f13071006. DOI
Christeller J.T., Poulton J., Markwick N.M., Simpson R.M. The effect of diet on the expression of lipase genes in the midgut of the light brown apple moth (Epiphyas postvittana Walker; Tortricidae) Insect Mol. Biol. 2010;19:9–25. doi: 10.1111/j.1365-2583.2009.00924.x. PubMed DOI
Lwalaba D., Hoffmann K.H., Woodring J. Control of the release of digestive enzymes in the larvae of the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 2010;73:14–29. doi: 10.1002/arch.20332. PubMed DOI
Fujimoto J., Kanou C., Eguchi Y., Matsuo Y. Adaptation to a starch environment and regulation of alpha-amylase in Drosophila. Biochem. Gen. 1999;37:53–62. doi: 10.1023/A:1018766017509. PubMed DOI
Zinke I., Schütz C.S., Katzenberger J.D., Bauer M., Pankratz M.J. Nutrient control of gene expression in Drosophila: Microarray analysis of starvation and sugar-dependent response. EMBO J. 2002;21:6162–6173. doi: 10.1093/emboj/cdf600. PubMed DOI PMC
Wool D., Namir Z., Bergerson O. Dietary regulation of amylase activity levels in flour beetles (Coleoptera: Tenebrionidae): (Tribolium) Ann. Entomol. Soc. Am. 1986;79:407–413. doi: 10.1093/aesa/79.3.407. DOI
Karimi-Pormehr M.S., Borzoui E., Naseri B., Dastjerdi H.R., Mansouri S.M. Two-sex life table analysis and digestive physiology of Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) on different barley cultivars. J. Stored Prod. Res. 2018;75:64–71. doi: 10.1016/j.jspr.2017.10.005. DOI
Nemati-Kalkhoran M., Razmjou J., Borzoui E., Naseri B. Comparison of life table parameters and digestive physiology of Rhyzopertha dominica (Coleoptera: Bostrichidae) fed on various barley cultivars. J. Insect Sci. 2018;18:31. doi: 10.1093/jisesa/iey022. PubMed DOI PMC
Zhao X.D., Geng Y.S., Hu T.Y., Li W.X., Liang Y.Y., Hao D.J. Comparing the performance of Hyphantria cunea (Lepidoptera: Arctiidae) on artificial and natural diets: Feasibility of mass-rearing on artificial diets. J. Econom. Entomol. 2023;116:181–191. doi: 10.1093/jee/toac176. PubMed DOI
Broadway R.M., Duffey S.S. The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol. 1986;32:673–680. doi: 10.1016/0022-1910(86)90108-3. DOI
Kamin-Belsky N., Wool D. Dietary modification of digestive physiology in larvae of almond moth (Lepidoptera: Phyticidae) J. Econom. Entomol. 1991;84:768–775. doi: 10.1093/jee/84.3.768. DOI
Mrdaković M., Stojković B., Perić-Mataruga V., Ilijin L., Vlahović M., Lazarević J. Adaptive phenotypic plasticity of gypsy moth digestive enzymes. Open. Life Sci. 2014;9:309–319. doi: 10.2478/s11535-013-0264-z. DOI
Bezzar-Bendjazia R., Kilani-Morakchi S., Maroua F., Aribi N. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae) Pestic. Biochem. Physiol. 2017;143:135–140. doi: 10.1016/j.pestbp.2017.08.006. PubMed DOI